CHAPTER I: MORRIS COUNTY'S AGRICULTURAL LAND BASE

Morris County is approximately 481 square miles, or 308,123 acres in total, and has approximately 11,600 acres of actively farmed land. In recent years, the farming community has experienced development pressures which threaten the loss of the existing agricultural landscape and by extension, the vitality of the farming industry. The County's Farmland Preservation Program has been successful, having preserved over 8,070 acres of farmland across 138 farms as of the writing of this plan. Farms in Morris County have been preserved through several programs, including Country, Non-Profit, Municipal and State Programs.

Several sources provide information regarding Morris County's agricultural statistics. The United States Department of Agriculture (USDA) Census of Agriculture utilizes a surveyed sample of the County's farmland owners and operators. Another source, Morris County tax assessment data, is based on information provided by landowners on farmland assessment forms, which represents their agricultural operations. The difference in methodologies makes it impractical to compare the data from one source to another, though both sources on their own provide valuable information regarding agriculture in Morris County.

Location and Size of Agricultural Base

According to 2021 tax assessment records, Morris County has approximately 30,605 acres of assessed farmland, making up 13 percent of the County's total land area. Of the County's 40 municipalities, 28 have farmland assessed property. The following chart details the number of acres of farmland per municipality in the County according to tax assessment records. These properties are tax assessed as 3A: Regular Farmland or 3B: Qualified Farmland. As demonstrated below, Washington Township has the most farmland in Morris County, comprising 35.6 percent of all farmland, followed by Chester Township and Mount Olive Township.

Existing Farmland							
Municipality	Acres	Percentage		Municipali	ty	Acres	Percentage
Washington Township	10,889.8	35.6%		Lincoln Park		395.9	1.3%
Chester Township	3,205.2	10.5%		Pequannock Town	ship	307.2	1.0%
Mount Olive Township	2,748.1	9.0%		Kinnelon		257.8	0.8%
Harding Township	1,871.8	6.1%		Chatham Townshi	р	146.8	0.5%
Mendham Township	1,758.8	5.7%		Long Hill Township)	142.5	0.5%
Roxbury Township	1,602.6	5.2%		Chester Borough		108.4	0.4%
Jefferson Township	1,464.7	4.8%		Mine Hill Townshi	p	75.8	0.2%
Rockaway Township	1,278.7	4.2%		Florham Park		44.8	0.1%
Mendham Borough	1,101.9	3.6%		Riverdale		35.9	0.1%
Boonton Township	997.9	3.3%		Wharton		23.2	0.1%
Montville	682.0	2.2%		Hanover Township)	19.6	0.1%
Morris Township	539.5	1.8%		Boonton		14.8	0.0%
Denville Township	442.5	1.4%		Mountain Lakes		9.6	0.0%
Randolph	433.6	1.4%		Butler		6.0	0.0%
Total		Acres		Percentage			
Total		30,605.57			100.0%		

Source: NJ 2021 Tax Assessment Data; acreages calculated in GIS

As shown on the following map, farms are primarily concentrated in the southwesterly portion of Morris County.

Morris County Farmland Preservation Plan CHAPTER I

In addition to tax assessment records, New Jersey Department of Environmental Protection's Land Use Land Cover (LULC) also provides a snapshot of existing land uses within the County. Using aerial photography and remote sensing technology, land use is categorized as either agricultural, barren land, forest, urban, water, or wetlands. As shown by the following table, urban and forested land are the most prevalent land use types in the County with nearly 80 percent of the County's total area; however, more than 11,600 acres of the County's total land is used for agricultural purposes.

NJDEP 2015 Land Use Land Cover				
Land Use	Acres	Percent		
Agriculture	11,601.1	3.8%		
Barren Land	2,584.6	0.8%		
Forest	118,383.6	38.4%		
Urban	121,385.1	39.4%		
Water	11,160.2	3.6%		
Wetlands	43,008.9	14.0%		
TOTAL	308,123.5	100.0%		

Source: NJDEP 2015 LULC, acres calculated in GIS

Differences in acreages between the LULC and the tax assessment data stem from the data source. As noted previously, the LULC is based on aerial photography and remote sensing technology, while the latter stems from digitized tax maps and tax assessment records. It should be noted that the LULC does not account for farmland that is forested or has wetlands; it is solely the area of land that is actively farmed. The following map, entitled "Land Use Land Cover (2015)," shows the locations of these land uses within Morris County.

Morris County Farmland Preservation Plan CHAPTER I

Soil Distribution and Types

An important consideration in farmland preservation is the quality of soils for agricultural production. The major advantages of prime agricultural soils are their fertility and lack of limitations for crop production purposes. Prime soils will support almost any type of agriculture common to this region. Soil limitations include steep slopes, extreme stoniness, or wetness, which may hinder cultivation. Prime agricultural soils produce superior crop yield on a consistent basis due to their high fertility content, when measured against those soils not rated as prime.

The soil data provided in this report is provided by the Natural Resources Conservation Service (NRCS) of the United Stated Department of Agriculture (USDA), which started conducting national soil surveys in 1935 and continues today. The farmland classification prescribed by NRCS identifies map units as prime farmland soils, farmland soils of statewide importance, farmland soils of unique importance, or other soils that are not suitable for agriculture. Farmland classification identifies the location and extent of most suitable soils for producing food, feed, fiber, forage, and oilseed crops. This identification is useful in the management and maintenance of the resource base that supports the productive capacity of American agriculture. Morris County has approximately 60,414 acres of prime farmland, 31,271 acres of soils of statewide importance, 12,925 acres of soils of unique importance, 8,814 acres of soils of local importance and 194,699 acres that are categorized as not prime soils.

The following table compares the total acreage of soil in Morris County to that of active farmland. The active farmland is derived from NJDEP's 2015 Land Use Land Cover classification for agriculture. As shown in the chart below, active farmland in Morris County consists of 60.7 percent prime farmland soils, 1.3 percent soils of statewide importance, 24 percent soils of local importance, and 13 percent soils classified as not prime. Explanations of the farmland classifications are provided below.

Farmland Soils in Morris County				
Soil Turne	Count	ty-wide	Active Agriculture*	
Son Type	Acres	Percentage	Acres	Percentage
Prime Farmland	60,414.0	19.6%	7,043.6	60.7%
Statewide Importance	30,358.2	9.9%	121.7	1.0%
Statewide Importance, if drained	913.4	0.3%	30.2	0.3%
Local Importance	8,814.0	2.9%	2,805.4	24.2%
Unique Importance	12,924.8	4.2%	97.1	0.8%
Not Prime Farmland	194,699.2	63.2%	1,503.0	13.0%
Total	308,123.5	100.0%	11,601.0	100.0%

Source: USDA NRCS Web of Soil Survey, acreages calculated in GIS

* Based upon NJDEP 2015 Land Use Land Cover for agricultural lands

As shown on the following map, the majority of prime farmland soils are located within the southern portion of the County within Washington Township, Chester Township, Mendham Township, Mendham Borough, Harding Township, and Mount Olive Township. There are also prime farmland soils located along the eastern boundary of the County, however, these municipalities tend to consist of more urbanized development patterns and lack existing farmland.

Morris County Farmland Preservation Plan CHAPTER I

In addition to the Farmland Classification, soils also have an assigned non-irrigated land capability class. This classification system is based upon the capability of the soil to support development and agriculture. These Capability Classes are categorized on a scale of 1 through 8, with 1 having few limitations to restrict the use and 8 having the most restrictive limitations. The classes are defined as follows:

- 1. Class 1 soils have few limitations that restrict their use.
- 2. Class 2 soils have moderate limitations that reduce the choice of plants or that require moderate conservation practices.
- 3. Class 3 soils have severe limitations that reduce the choice of plants or that require special conservation practices, or both.
- 4. Class 4 soils have very severe limitations that reduce the choice of plants or that require very careful management, or both.
- 5. Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.
- 6. Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.
- 7. Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.
- 8. Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Further, the non-irrigated land capability class is also assigned a subclass, which is designated by adding a small letter, "e," "w," "s," or "c," to the class numeral. The letter "e" shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; "w" shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); "s" shows that the soil is limited mainly because it is shallow, droughty, or stony; and "c," used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry. Class 1 soils do not have a subclass, as there are few limitations.

The following section details each of the farmland classifications, as well as the land capability class for each soil unit within the county.

Prime Farmland Soils

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. SADC Prime Farmland Soils include all those soils in the USDA Land Capability Class I and selected soils from USDA Land Capability Class II. USDA Class I soils have slight limitations that restrict their use. USDA Class II soils have moderate limitations that reduce the choice of plants or require moderate limitations that reduce the choice of plants or require moderate conservation practices. SADC Prime Farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is also available for these uses.

The criteria for prime farmland designation include: an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few to no rocks. The water supply is dependable and of adequate quality.

Prime farmland is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slopes range from 0 to 6 percent.

According to the NRCS, some areas of prime farmland may require measures that overcome a hazard or limitation, such as flooding, wetness, and drought. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures.

According to the NRCS Web of Soils Survey, Morris County has 60,414 acres of soils that are considered Prime Farmland, as detailed in the following chart.

Prime Soils				
Symbol	Soil Description	Land Capability Classification	Acres	Percentage
AnoB	Annandale gravelly loam, 3 to 8 percent slopes	2 e	5,339.9	8.8%
BabA	Bartley loam, 0 to 3 percent slopes	2 w	579.0	1.0%
BabB	Bartley loam, 3 to 8 percent slopes	2 e	3,039.9	5.0%
BhnB	Birdsboro silt loam, 2 to 6 percent slopes	2 e	37.9	0.1%
BohB	Boonton moderately well drained gravelly loam, 3 to 8 percent slopes	2 e	1,002.3	1.7%
CakA	Califon loam, 0 to 3 percent slopes	2 w	1,361.7	2.3%
CakB	Califon loam, 3 to 8 percent slopes	2 e	3,902.0	6.5%
CanB	Califon gravelly loam, 3 to 8 percent slopes	2 e	952.4	1.6%
CapfB	Califon variant loam, 3 to 8 percent slopes	2 e	1,329.9	2.2%
EkhhB	Ellington loamy substratum variant fine sandy loam, 3 to 8 percent slopes	2 w	791.8	1.3%
GkaoB	Gladstone gravelly loam, 3 to 8 percent slopes	2 e	9,107.8	15.1%
HanB	Haledon silt loam, 3 to 8 percent slopes	3 w	4,486.3	7.4%
NekB	Neshaminy gravelly silt loam, 2 to 6 percent slopes	2 e	1,011.6	1.7%
NerB	Netcong gravelly sandy loam, 3 to 8 percent slopes	2 e	4,303.2	7.1%
PdtB	Pattenburg gravelly loam, 3 to 8 percent slopes	2 e	441.1	0.7%
РеоВ	Penn channery silt loam, 3 to 8 percent slopes	2 e	1,783.7	3.0%
PohA	Pompton sandy loam, 0 to 3 percent slopes	2 w	637.5	1.1%
PohB	Pompton sandy loam, 3 to 8 percent slopes	2 w	3,736.4	6.2%
RkrB	Riverhead sandy loam, 3 to 8 percent slopes	2 s	0.5	0.0%
RksA	Riverhead gravelly sandy loam, 0 to 3 percent slopes	2 s	361.3	0.6%
RksB	Riverhead gravelly sandy loam, 3 to 8 percent slopes	2 s	4,725.2	7.8%
RksnB	Riverhead variant gravelly sandy loam, 3 to 8 percent slopes	2 s	1,279.9	2.1%
RocB	Rockaway gravelly sandy loam, 3 to 8 percent slopes	2 e	2,172.1	3.6%
TurA	Turbotville loam, 0 to 3 percent slopes	2 w	1,190.4	2.0%
TurB	Turbotville loam, 3 to 8 percent slopes	2 e	2,927.9	4.8%
WadB	Washington loam, 3 to 8 percent slopes	2 e	1,132.7	1.9%

Prime Soils (Continued)				
Symbol	Soil Description	Land Capability Classification	Acres	Percentage
WhpA	Whippany silt loam, 0 to 3 percent slopes	2 w	268.1	0.4%
WhpB	Whippany silt loam, 3 to 8 percent slopes	2 w	1,077.0	1.8%
WhphA	Whippany silt loam, sandy loam substratum, 0 to 3 percent slopes	2 w	528.5	0.9%
WhphB	Whippany silt loam, sandy loam substratum, 3 to 8 percent slopes	2 w	906.0	1.5%
		60,414.0	100.0%	

Source: USDA Web of Soil Survey, acreages calculated in GIS

Soils of Statewide Importance

SADC Soils of Statewide Importance include those soils in the USDA Land Capability Class II and Class III that do not meet the criteria as SADC Prime Farmland Soils. USDA Class II soils have moderate limitations that reduce the choice of plants or require moderate conservation practices. Class III soils have severe limitations that reduce the choice of plants or require special conservation practices, or both. These soils can economically produce high yields of crops when treated and managed according to acceptable farming methods. Some may produce yields as high as SADC Prime Farmland if conditions are favorable. Criteria for defining and delineating this land are to be determined by the appropriate state agency or agencies. In some states, farmland of statewide importance may also include tracts of land that have been designated for agriculture by state law. Morris County has 30,358 acres of soils that are classified as being of Statewide Importance.

Soils of Statewide Importance					
Symbol	Soil Description	Land Capability Classification	Acres	Percentage	
AnoC	Annandale gravelly loam, 8 to 15 percent slopes	3 е	1,037.5	3.4%	
AnoC2	Annandale gravelly loam, 8 to 15 percent slopes, eroded	3 e	3.5	0.0%	
BacC	Bartley gravelly loam, 8 to 15 percent slopes	3 e	611.3	2.0%	
BohC	Boonton moderately well drained gravelly loam, 8 to 15 percent slopes	3 е	1,110.2	3.7%	
CakC	Califon loam, 8 to 15 percent slopes	3 е	993.9	3.3%	
ChrC	Chenango silt loam, 8 to 15 percent slopes	3 е	0.0	0.0%	
DufC2	Duffield silt loam, 6 to 12 percent slopes, eroded	3 е	0.3	0.0%	
EkhhC	Ellington loamy substratum variant fine sandy loam, 8 to 15 percent slopes	2 w	933.5	3.1%	
GkaoC	Gladstone gravelly loam, 8 to 15 percent slopes	3 е	6,293.0	20.7%	
GkaoC2	Gladstone gravelly loam, 8 to 15 percent slopes, eroded	3 е	124.2	0.4%	
HanC	Haledon silt loam, 8 to 15 percent slopes	3 е	789.7	2.6%	

Soils of Statewide Importance (Continued)					
Symbol	Soil Description	Land Capability Classification	Acres	Percentage	
MenC	Meckesville moderately well drained gravelly loam, 6 to 12 percent slopes	3 e	5.6	0.0%	
NekC	Neshaminy gravelly silt loam, 6 to 12 percent slopes	3 e	1,341.1	4.4%	
NerC	Netcong gravelly sandy loam, 8 to 15 percent slopes	3 e	2,710.6	8.9%	
РаоС	Parker gravelly sandy loam, 3 to 15 percent slopes	3 e	8,668.3	28.6%	
PdtC	Pattenburg gravelly loam, 8 to 15 percent slopes	3 e	287.5	0.9%	
PeoC	Penn channery silt loam, 8 to 15 percent slopes	3 e	1,205.5	4.0%	
RerB7	Reaville deep variant channery silt loam, 0 to 6 percent slopes	4 w	1,073.9	3.5%	
RksC	Riverhead gravelly sandy loam, 8 to 15 percent slopes	3 e	2,074.3	6.8%	
RocC	Rockaway gravelly sandy loam, 8 to 15 percent slopes	3 e	1,091.0	3.6%	
WadC2	Washington loam, 8 to 15 percent slopes, eroded	3 e	3.3	0.0%	
	TOTAL 30,358.2 100.0%				

Source: USDA Web of Soil Survey, acreages calculated in GIS

The following chart details the soils which are of statewide importance if drained. These soils can be capable of producing yields as high as Statewide important soils when drained. The County has 913 acres of soil that are considered to be of Statewide importance if drained.

Soils of Statewide Importance, if drained					
Symbol	Soil Description	Land Capability Classification	Acres	Percentage	
BoyAt	Bowmansville silt loam, 0 to 2 percent slopes, frequently flooded	6 w	0.0	0.0%	
MknA	Minoa silt loam, 0 to 3 percent slopes	3 w	236.2	25.9%	
MknB	Minoa silt loam, 3 to 8 percent slopes	3 w	677.1	74.1%	
		TOTAL	913.4	100.0%	

Source: USDA Web of Soil Survey, acreages calculated in GIS

Soils of Unique Importance

Unique soils are those soils other than prime farmland soils that are used for the production of specific high value food and fiber crops. It has the special combination of soil quality, location, growing season, and moisture supply needed to economically produce sustained high quality and/or high yields of a specific crop when treated and managed according to acceptable farming methods. Examples of such crops are citrus, tree nuts, olives, cranberries, and other fruits and vegetables. Nearness to markets is an additional consideration. Unique farmland is not based on national criteria. It commonly is in areas where there is a special microclimate, such as the wine country in California. Morris County has 12,925 acres of soils that are of unique importance.

Unique Importance Soils								
Symbol	Soil Description	Land Capability Classification	Acres	Percentage				
AdrAt	Timakwa muck, 0 to 2 percent slopes, frequently flooded	5 w	3,460.8	26.8%				
CarAt	Catden muck, 0 to 2 percent slopes, frequently flooded	5 w	7,522.4	58.2%				
CatbA	Catden muck, 0 to 2 percent slopes	5 w	98.4	0.8%				
PafAt	Natchaug muck, 0 to 2 percent slopes, frequently flooded	5 w	866.9	6.7%				
WkkAt	Willette muck, 0 to 2 percent slopes, frequently flooded	7 w	976.1	7.6%				
		TOTAL	12,924.8	TOTAL 12,924.8 100.0%				

Source: USDA Web of Soil Survey, acreages calculated in GIS

Soils of Local Importance

Soils of local importance include those soils that are not prime or of Statewide importance and are used for the production of high value food, fiber or horticultural crops. In some local areas, certain farmlands are not identified as having national or Statewide importance. Where appropriate, these lands are identified by the local agency or agencies concerned as important to local agricultural production. These may also include tracts of land that have been designated for agriculture by local ordinance. Morris County has 8,814 acres of soil that are of local importance.

	Soils of Local Importance					
Symbol	Soil Description	Land Capability Classification	Acres	Percentage		
PbphAt	Parsippany silt loam, sandy loam substratum, 0 to 3 percent slopes, frequently flooded	4 w	8,813.9	100.0%		
RorAt	Rowland silt loam, 0 to 2 percent slopes, frequently flooded	2 w	0.0	0.0%		
	TOTAL			100.0%		

Source: USDA Web of Soil Survey, acreages calculated in GIS

Not Prime Farmland Soils

Not prime farmland soils include those soils that are not prime farmland, not of statewide importance, not unique, or of local importance. These soils lack the physical and chemical characteristics which allow for agricultural crops to thrive. Not prime farmlands are listed below.

Not Prime Farmland				
Symbol	Soil Description	Land Capability Classification	Acres	Percentage
AhcBc	Alden mucky silt loam, gneiss till substratum, 0 to 8 percent slopes, extremely stony	7 s	72.9	0.0%
BhdAt	Biddeford silt loam, 0 to 2 percent slopes, frequently flooded	6 w	3,253.4	1.7%
вохсс	Boonton and Haledon soils, 8 to 15 percent slopes, extremely stony	7 s	859.5	0.4%
CakBb	Califon loam, 0 to 8 percent slopes, very stony	6 s	3,773.9	1.9%

Not Prime Farmland (Continued)				
Symbol	Soil Description	Land Capability Classification	Acres	Percentage
CakCb	Califon loam, 8 to 15 percent slopes	6 s	759.4	0.4%
CanBb	Califon gravelly loam, 0 to 8 percent slopes, very stony	6 s	129.7	0.1%
ChkC	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	7 s	118.2	0.1%
ChkE	Chatfield-Hollis-Rock outcrop complex, New Jersey Highlands, 35 to 60 percent slopes	7 s	47.6	0.0%
CoaA	Cokesbury loam, 0 to 3 percent slopes	4 w	6.9	0.0%
CoaBb	Cokesbury loam, 0 to 8 percent slopes, very stony	7 s	156.1	0.1%
CoaBc	Cokesbury loam, 0 to 8 percent slopes, extremely stony	7 s	6,402.9	3.3%
CobA	Cokesbury gravelly loam, 0 to 3 percent slopes	4 w	2,110.6	1.1%
CobB	Cokesbury gravelly loam, 3 to 8 percent slopes	4 w	1,569.5	0.8%
CobBb	Cokesbury gravelly loam, 0 to 8 percent slopes, very stony	7 s	1.8	0.0%
CobBc	Cokesbury gravelly loam, 0 to 8 percent slopes, extremely stony	7 s	0.1	0.0%
EkhhD	Ellington loamy substratum variant fine sandy loam, 15 to 25 percent slopes	2 w	281.3	0.1%
FmhAs	Fluvaquents, loamy, 0 to 3 percent slopes, occasionally flooded	3 w	26.0	0.0%
FNAT	Fluvaquents and Udifluvents, 0 to 3 percent slopes, frequently flooded	5 w	5.9	0.0%
GkaoD	Gladstone gravelly loam, 15 to 25 percent slopes	4 e	2,138.1	1.1%
GKAPCC	Gladstone and Parker soils, 8 to 15 percent slopes, extremely stony	7 s	237.4	0.1%
HcuAt	Hatboro-Codorus complex, 0 to 3 percent slopes, frequently flooded	5 w	4,436.0	2.3%
HhmBc	Hibernia loam, 0 to 8 percent slopes, extremely stony	7 s	150.8	0.1%
HhmCa	Hibernia loam, 3 to 15 percent slopes, stony	4 s	10,089.7	5.2%
HhmDb	Hibernia loam, 15 to 25 percent slopes, very stony	6 s	619.0	0.3%
HncD	Hollis-Rock outcrop-Chatfield complex, New Jersey Highlands, 15 to 35 percent slopes	7 s	83.0	0.0%
HokCg	Holyoke silt loam, 0 to 15 percent slopes, rocky	7 s	674.3	0.3%
HomE	Holyoke-Rock outcrop complex, 15 to 45 percent slopes	7 e	789.2	0.4%
KkrE	Klinesville channery silt loam, 25 to 45 percent slopes	7 e	238.8	0.1%
NehDb	Neshaminy silt loam, 12 to 18 percent slopes, very stony	6 s	436.7	0.2%
OtsC	Otisville gravelly loamy sand, 3 to 15 percent slopes	4 s	2,403.0	1.2%
OtsD	Otisville gravelly loamy sand, 15 to 25 percent slopes	6 s	607.1	0.3%

Not Prime Farmland (Continued)								
Symbol	Soil Description	Land Capability Classification	Acres	Percentage				
PapD	Parker very gravelly sandy loam, 15 to 25 percent slopes	4 e	2,460.9	1.3%				
ParC	Parker cobbly loam, 3 to 15 percent slopes	4 s	300.5	0.2%				
ParD	Parker cobbly loam, 15 to 25 percent slopes	6 s	51.7	0.0%				
ParEe	Parker cobbly loam, 18 to 40 percent slopes, extremely stony	7 s	180.3	0.1%				
PauCc	Parker-Gladstone complex, 0 to 15 percent slopes, extremely stony	7 s	15,614.9	8.0%				
PauDc	Parker-Gladstone complex, 15 to 25 percent slopes, extremely stony	7 s	8,534.0	4.4%				
PawE	Parker-Rock outcrop complex, 25 to 45 percent slopes	7 s	6,530.1	3.4%				
PbpAt	Parsippany silt loam, 0 to 3 percent slopes, frequently flooded	5 w	3,172.5	1.6%				
PbtAt	Parsippany very poorly drained variant silt loam, 0 to 2 percent slopes, frequently flooded	4 w	0.0	0.0%				
PgmD	Penn-Klinesville channery silt loams, 12 to 18 percent slopes	4 e	510.4	0.3%				
PHG	Pits, sand and gravel	8 s	1,292.5	0.7%				
PrkAt	Preakness sandy loam, 0 to 3 percent slopes, frequently flooded	4 w	3,595.8	1.8%				
PrnAt	Preakness silt loam, 0 to 3 percent slopes, frequently flooded	4 w	44.8	0.0%				
PrsdAt	Preakness dark surface variant sandy loam, 0 to 3 percent slopes, frequently flooded	4 w	1,276.9	0.7%				
QY	Quarries	8 s	57.3	0.0%				
RkgBb	Ridgebury stony loam, New Jersey Highlands, 0 to 8 percent slopes, very stony	6 s	2,595.5	1.3%				
RkgBc	Ridgebury stony loam, New Jersey Highlands, 0 to 8 percent slopes, extremely stony	7 s	4,516.8	2.3%				
RNAAC	Rock outcrop	8 s	574.0	0.3%				
RNRE	Rock outcrop-Rockaway complex, 15 to 35 percent slopes	8 s	7,986.9	4.1%				
RobCb	Rockaway sandy loam, 8 to 15 percent slopes, very stony	6 s	23,516.5	12.1%				
RobDc	Rockaway sandy loam, 15 to 25 percent slopes, extremely stony	7 s	10,285.7	5.3%				
RoefBc	Rockaway loam, thin fragipan, 0 to 8 percent slopes, extremely stony	7 s	25.5	0.0%				
RoefCc	Rockaway loam, thin fragipan, 8 to 15 percent slopes, extremely stony	7 s	218.3	0.1%				
RoefDc	Rockaway loam, thin fragipan, 15 to 35 percent slopes, extremely stony	7 s	132.0	0.1%				
RokD	Rockaway-Chatfield-Rock outcrop complex, 35 to 60 percent slopes	6 s	345.9	0.2%				
RomC	Rockaway-Rock outcrop complex, 8 to 15 percent slopes	7 s	6,794.4	3.5%				

Not Prime Farmland (Continued)							
Symbol	Soil Description	Land Capability Classification	Acres	Percentage			
RomD	Rockaway-Rock outcrop complex, 15 to 25 percent slopes	7 s	5,551.3	2.9%			
RomE	Rockaway-Rock outcrop complex, 25 to 45 percent slopes	7 s	2,199.4	1.1%			
RooC	Rockaway-Urban land complex, thin fragipans, 0 to 15 percent slopes	3 е	24.8	0.0%			
RooD	Rockaway-Urban land complex, thin fragipans, 0 to 25 percent slopes	4 e	14.0	0.0%			
SweDc	Swartswood fine sandy loam, 15 to 25 percent slopes, extremely stony	7 s	0.2	0.0%			
UccAs	Udifluvents, 0 to 3 percent slopes, occasionally flooded	2 w	13.4	0.0%			
UdaB	Udorthents, 0 to 8 percent slopes, smoothed	3 w	1.5	0.0%			
UdkttB	Udorthents, loamy fill substratum, 0 to 8 percent slopes	3 w	1.8	0.0%			
UdrB	Udorthents, refuse substratum, 0 to 8 percent slopes	7 s	797.4	0.4%			
UR	Urban land	8 s	6,840.0	3.5%			
URPOMB	Urban land, Pompton substratum, 0 to 8 percent slopes	8 s	0.1	0.0%			
URWETB	Urban land, wet substratum, 0 to 8 percent slopes	8 s	554.6	0.3%			
USCHRC	Urban land-Chatfield-Rock Outcrop complex, 0 to 15 percent slopes	8 s	0.6	0.0%			
USGKAC	Urban land-Gladstone complex, 8 to 15 percent slopes	8 s	1,371.1	0.7%			
USHALB	Urban land-Haledon complex, 3 to 8 percent slopes	8 s	2,891.6	1.5%			
USNESB	Urban land-Neshaminy complex, 0 to 8 percent slopes	2 s	628.5	0.3%			
USPENB	Urban land-Penn complex, 0 to 8 percent slopes	8 s	536.6	0.3%			
USPREB	Urban land-Preakness complex, 0 to 8 percent slopes	8 s	396.9	0.2%			
USRHVB	Urban land-Riverhead complex, 3 to 8 percent slopes	8 s	10,028.3	5.2%			
USROCC	Urban land-Rockaway complex, 3 to 15 percent slopes	8 s	7,717.6	4.0%			
USROCD	Urban land-Rockaway complex, 15 to 25 percent slopes	8 s	612.7	0.3%			
USWHHB	Urban land-Whippany, occasionally flooded complex, 0 to 8 percent slopes	8 w	906.2	0.5%			
WATER	Water		9,572.8	4.9%			
WhvAb	Whitman cobbly loam, New Jersey Highlands 0 to 3 percent slopes, very stony	5 s	944.6	0.5%			
WuoBc	Wurtsboro silt loam, 0 to 8 percent slopes, extremely stony	7 s	0.1	0.0%			
		TOTAL	194,699.2	100.0%			

Irrigation and Water Resources

Irrigation can be used by farmers to create viable agricultural land that would otherwise be unsuitable for intensive crop production. Irrigation transports water to crops to increase yield, keeps crops cool under excessive heat conditions, and can be used to prevent freezing.

Although natural precipitation can provide some water for agricultural operations, it does not provide a consistent supply of water to sustain farming activities. As a result, farmers must adopt irrigation practices based on their farm's location and surrounding environment. The most common sources of irrigation include:

- Drilling wells and pumping water from the ground. This method is regarded as the most popular technique, but is also the costliest.
- Farm pond irrigation method. This technique captures surface water from the surrounding area. In areas where the water table is very close to the surface, it taps into the groundwater.
- Pumping water from a stream. Farmers may adopt this method if their farmland is close to streams, lakes, and rivers.
- Farmers can then choose between different methods of irrigation, including sprinkler or drip irrigation systems. Generally, drip irrigation systems are thought to be the more efficient method. The following table represents the number of farms and acres irrigated within Morris County, based on U.S. Census of Agriculture data.

Morris County communities rely on both surface and ground water supply sources for their water needs. Surface water supplies are derived from some reservoirs, lakes and streams situated throughout the County. The majority of water supply is derived from groundwater resources. subsurface sources are obtained from fractured rock aquifers such as the Igneous and metamorphic, Jacksonburg Limestone, Kittatinny Supergroup, and Hardyston Quartzite, and Rocks of the Green Pond Mountain Region, Kittatinny Mountain, and Minisink Valley in the westerly portion of the County, and the Basalt and Brunswick Aquifer in the easterly portion.¹

Morris County Irrigated Farms & Acreage 1987-2017							
Year	Farms	% Change	Acres	% Change			
1987	66	-	483	-			
1992	64	-3.0%	566	17.2%			
1997	79	23.4%	865	52.8%			
2002	87	10.1%	855	-1.2%			
2007	78	-10.3%	1,006	17.7%			
2012	99	26.9%	726	-27.8%			
2017	121	22.2%	1,707	135.1%			

Source: Census of Agriculture

Statistics and Trends

Historically, roughly 80 percent of Morris County has been classified as either forest or urban land according to NJDEP Land Use Land Cover data. From 2002 to 2015, the County experienced an overall loss of 1,700 acres of agricultural land or 12.8 percent between 2002 and 2015, while urban land increased by 8,149 acres or 7.2 percent. The following table details the changes in the land use classification of Morris County from 2002 to 2015.

¹ Aquifers of New Jersey by Herman et al, NJGS, NJDEP, 1998. https://www.state.nj.us/dep/njgs/pricelst/ofmap/ofm24.pdf

Morris County Land Use Land Cover 2002-2015										
Land Use	2002		2007		2012		2015		Change: 2002-2015	
	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
Agriculture	13,302	4.3%	12,733	4.1%	11,749	3.8%	11,601	3.8%	-1,700.7	-12.8%
Barren Land	3,432	1.1%	2,710	0.9%	2,540	0.8%	2,585	0.8%	-847.5	-24.7%
Forest	123,769	40.2%	119,133	38.7%	118,819	38.6%	118,384	38.4%	-5,385.3	-4.4%
Urban	113,236	36.8%	119,137	38.7%	120,749	39.2%	121,385	39.4%	8,149.3	7.2%
Water	10,645	3.5%	11,303	3.7%	11,347	3.7%	11,160	3.6%	514.9	4.8%
Wetlands	43,740	14.2%	43,108	14.0%	42,920	13.9%	43,009	14.0%	-730.7	-1.7%
TOTAL	308,124	100.0%	308,124	100.0%	308,123	100.0%	308,124	100.0%	-	

Source: NJDEP Land Use Land Cover; acreages calculated in GIS

Number of Farms and Farm by Size

According to the U.S. Agriculture Census, the number of Morris County farms has fluctuated since its peak in 1987. The number of farms hit a low point in 2012 at 366; however, as of 2017 the number of farms rebounded to 418.

Number of Morris County Farms							
Year	Number	% Change					
1987	430	-					
1992	395	-8.1%					
1997	383	-3.0%					
2002	407	6.3%					
2007	422	3.7%					
2012 366		-13.3%					
2017	14.2%						

Source: U.S. Census of Agriculture

The size of farms has fluctuated since 1987, likely due to subdivisions occurring within the county's municipalities and being developed or converted into other land uses. Farms that are between 1 to 49 acres have experienced an increasing trend since 1987. In 1987, there were 297 farms within this size range, and by 2017, there were 341 farms, representing an increase of 44 farms. Farms in the 50 to 499 acres category experienced a continuous decrease since 1987, when there was a total of 126 farms. As of 2017, there were only 73 farms remaining within this size range, representing an overall decrease of 53 farms. Large farms greater than 500 acres have remained low, ranging from as many as nine in 1992 to as little as three in 2002 and 2012.

Morris County Farms by Farm Size								
Year	1-49	acres	50-49	9 acres	500+ acres			
	Number	% Change	Number	% Change	Number	% Change		
1987	297	-	126	-	7	-		
1992	293	-1.35%	93	-26.19%	9	28.57%		
1997	282	-3.75%	94	1.08%	7	-22.22%		
2002	314	11.35%	90	-4.26%	3	-57.14%		
2007	346	10.19%	69	-23.33%	7	133.33%		
2012	289	-16.47%	74	7.25%	3	-57.14%		
2017	341	17.99%	73	-1.35%	4	33.33%		

Source: US Census of Agriculture

Average & Median Farm Size

Morris County farm sizes have been on a downward trend since their peak in 1987, when the average farm size was 63 acres. Farm size decreased over the past 30 years to 35 acres in 2017, representing a 55 percent drop. Median farm size was not collected until 1997, but its patterns mirror that of the average size, representing a loss of 71 percent.

Average and Median Farm Size in Morris County							
Year	Avera	ge Farm Size	Median Farm Size				
	Acres	% Change	Acres	% Change			
1987	63	-	-	-			
1992	61	-3.17%	-	-			
1997	58	-4.92%	17	-			
2002	42	-27.59%	16	-5.88%			
2007	40	-4.76%	13	-18.75%			
2012	40	0.00%	13	0.00%			
2017	35	-12.50%	12	-7.69%			

Source: U.S. Census of Agriculture