Appendix "A"

Purpose and Need Statement

Concept Development Route 24 and Columbia Turnpike Interchange Improvements Purpose and Need Statement

INTRODUCTION

The project is located in the area between the Route 24 EB ramp to Columbia Turnpike and the signalized intersection of Columbia Turnpike and Park Avenue in Morris and Hanover Townships, Morris County. Based on the Smart Solution Study, the intersection is currently near capacity with several movements failing and the signal is over capacity during the AM peak hours.

The Route 24 EB ramp merges with Columbia Turnpike approximately 650 feet east of the signalized intersection and there is a heavy movement from this ramp to the double left-turn lane at the intersection; however queuing in the left-turn lane prevents motorists from this ramp from entering the lane, and they then impede the movement of through traffic. The westbound Columbia Turnpike approach to Park Avenue is currently striped as two through lanes, two left lanes and one right lane. This intersection is currently near capacity with several movements failing and over capacity during the AM peak hours.

A Project Location Map and NJDOT Straight Line Diagrams for NJ Route 24, Columbia Turnpike and Park Avenue are attached.

PURPOSE

The purpose of this project is to develop recommendations that would improve the traffic flow between the ramp and the intersection and reduce crashes, along with providing improvements to the operation of the intersection that could be investigated further. The Route 24 EB ramp merges with Columbia Turnpike WB approximately 650 feet east of the signalized intersection of Columbia Turnpike and Park Avenue. At this intersection there is a heavy AM left turn movement on the Columbia Turnpike WB approach that currently utilizes a double left-turn lane.

NEED

Operational Deficiency: The Route 24 EB ramp merges with Columbia Turnpike approximately 650 feet east of the signalized intersection at Park Avenue. There is a heavy movement from this ramp to the double left-turn lane at the intersection. Columbia Turnpike is currently striped as two through lanes, two left lanes and one right lane.

The ramp movement from EB Route 24 to WB Columbia Turnpike is impacted by the weaving movement from this turn to left turns from Columbia Turnpike WB to Park Avenue SB. There is inadequate transition room for this movement to operate smoothly, and left-turn queuing often leaves this traffic waiting to enter the left-turn lane thus impeding the flow of through traffic. This creates congestion that backs up onto the Route 24 mainline, especially during the weekday morning peak period.

The intersection of Columbia Turnpike and Park Avenue operates at or close to capacity during both peak hours. During the morning peak hours, the WB left and SB through movements
operate at unacceptable levels of service. During the evening peak hour, the NB approach operates at marginal levels of service.

GOALS AND OBJECTIVES

It is the intent of this project to fulfill the purpose and address the needs while minimizing environmental, quality of life, access, right of way and utility impacts. Any proposed improvements will consider improvements to pedestrian accommodations and circulation, as well as impacts to emergency services and road user costs.

EXISTING DEFICIENCIES

Information gathered from available record plans and reports, combined data observation during field visits, was used to identify areas that were noted to be deficient according to current design criteria. Section II summarizes the project's purpose and need as well as goals and objectives based on these deficiencies.

The focus of the project is the traffic flow between the ramp and the intersection along with providing improvements to the operation of the intersection. There are no bridge replacement issues, flooding issues or other significant maintenance issues related to the structure. However, upon evaluation the following deficiencies exist:

- Right turn from EB Route 24 to WB Columbia Turnpike are impacted by the weaving movement from this turn to left turns from Columbia Turnpike WB to Park Avenue SB. There is inadequate transition room for this movement to operate smoothly and left-turn queuing contributes to ramp traffic blocking westbound through travel lanes. This creates congestion that backs up onto the Route 24 mainline during the morning peak.
- The intersection of Columbia Turnpike and Park Avenue operates at or close to capacity during both peak hours. During the morning peak hours, the WB left and SB through movements operate at unacceptable levels of service. During the evening peak hour, the NB approach operates at marginal levels of service.

Appendix "B"

Bridge Re-evaluation Survey Report (latest cycle)
 (Not Applicable)

Appendix "C"

Bridge Scour Evaluation Report (latest cycle)
 (Not Applicable)

Appendix "D"

As-Built Plans and Jurisdiction Maps

Appendix "E"

Tax Maps

KEMMAP


```
(Page 1 of
```


\qquad

O

\qquad
-

\ldots
(Page 1 of 1)

f.O. Box 9ot, CEDAR KNollis, NEw jefser
(Page 1 of 1)

(Page 1 of 1)

Appendix "F"

Crash Data

Crash Data

2016-2018

DEPARTMENT OF TRANSPORTATION
P.O. Box 600

Trenton, New Jersey 08625-0600

PHILIP D. MURPHY
Governor
SHEILA Y. OLIVER
Lt. Governor

DIANE GUTIERREZ-SCACCETTI
Commissioner

October 30, 2019
John Korunow, Civil Design Services Manager
IH Engineers, PC
103 College Road East, $1^{\text {st }}$ floor
Princeton, NJ 08540
RE: Crash Analysis
CR 510 MP 14.13 to 14.60 and at 14.23
Various Municipalities, Morris County
This is in reference to your request dated October 2, 2019, requesting this office to furnish the crash data for the above referenced location for the years 2016 through 2018.

CRASH DATA RELATIVE TO OVERREPRESENTATIONS:

The crash summaries relative to overrepresentations for the following sections of CR 510, for the period January 1, 2016 to December 31, 2018 are herewith attached. The percentages on the summary are 2018 statewide average values corresponding to overrepresented crash categories.

Also, enclosed are the Details of Motor Vehicle Accidents for the years 2016 through 2018. The Details will show the frequency and severity at various locations (at/between intersection) along this portion of this roadway segment. This information may help your office in any engineering decision that might be made to improve or upgrade this intersection.

The following is the safety score:

Evaluation \#2 Safety Score

Route	Mile Post	At Intersection	Safety Score
CR 510	4.23	CR 510/CR 623	10

If there are any further questions, please contact Yosy Cosme of this office at (609)-963-1873.

Very truly yours,
Narhaba Onum
Marhaba Omer, Principal Engineer
Bureau of Transportation Data and Safety
MO: YC
BSP Log \#112-19
Cc: Eduard D'Arcy, Division of Program Management
CRASH SUMMARY
Route CR 510 MP 14.23
Various communities, Morris County
$01 / 01 / 2016$ THRU 12/31/2018

INTERSECTION	COUNT	\% OF TOTAL	2018 Average	${ }^{* *}$
At Signalized Intersection	19	100.00%	100.00%	
At Unsignalized Intersection	0	0.00%		
Between Intersections	0	0.00%		
Railroad Crossing	0	0.00%		
Total	19			

TOTAL CRASHES: 19

COL

[^0]CRASH SUMMARY
Route CR 510 MP 14.13 to 14.60
Various communities, Morris County

${ }_{* *}$ These columns indicate the number of fatal crashes in each accident category. Length of Segment

AADT
Crash Rate/MVM
TOTAL CRASHES: 61

Length of Segment Number of Years
-

ROAD SYS DLN / Ramp	$\begin{aligned} & \text { COLLISION } \\ & \text { TYPE } \end{aligned}$	VEHICLE 1 DIR TRAV VEH TYPE, VEH ACTN	VEHICLE 2 DIR TRAV VEH TYPE, VEH ACTN	WEA SUR	LITE	DATE	DOW	TIME	VEH 1 CONTRIB CIRCUMSTANCES	VEH 2 CONTRIB CIRCUMSTANCES	$\begin{aligned} & \text { NO. } \\ & \text { KIL } \end{aligned}$		$\begin{aligned} & \text { INJ } \\ & \text { MOD } \end{aligned}$	URED MIN	$\begin{aligned} & \text { NO. } \\ & \text { ACC } \end{aligned}$
COUNTY ROAD	CR 510	MP 014.41	NEAR CR 623 / PARK				HAN	VER T		MORRIS	0	0		00	1
16102538	SAME DIR-REAR	W- PASS-SLOW-STOP	W- PASS-SLOW-STOP	CL/DR	DARK	01/06/16		17:17	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0	0	0	
COUNTY ROAD	CR 510	MP 014.42	NEAR CR 623 / PARK				HAN	VER T		MORRIS	0	0	0	0	1
17117745	SAME DIR-REAR	W- SUV-STOP-TRAF	W- SUV-SLOW-STOP	RN/WT	DARK	01/03/17	TUE	17:25	FOLLOW TO CLOSE	NONE-DRIVER/CYC	0	0	0	0	
COUNTY ROAD	- CR 510	MP 014.48	NEAR CR 623 / PARK				HAN	VER T		MORRIS	0	0		0	3
16149582	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-STOP-TRAF	CL/DR	DAY	03/24/16	THR	17:19	NONE-DRIVER/CYC	NONE-DRIVER/CYC	0	0		0	
16200999	SAME DIR-REAR	W- PASS-START TRAF	W- PASS-STOP-TRAF	CL/DR	DAY	06/17/16	FRI	17:17	DRI INATTENTION	NONE-DRIVER/CYC	0	0	0	0	
16210848	SAME DIR-REAR	W- PASS-GOING STRT	W- SUV-MERGING	CL/DR	DAY	06/30/16	THR	17:31	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0	0	0	
COUNTY ROAD	CR 510	MP 014.55	NEAR NJ 24				HAN	VEER T		MORRIS	0	0		0	1
18295103	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-SLOW-STOP	RN/WT	DARK	12/20/18		17:21	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0		0	
COUNTY ROAD	CR 510	MP 014.58	NEAR NJ 24				HAN	OVER T		MORRIS	0	0	0	0	1
18270408	SAME DIR-SIDE	E- PASS-CHNG LANES	E- PASS-GOING STRT	RN/WT	DAY	11/05/18	MON	$13: 24$	IMP LANE CHANGE	NONE-DRIVER/CYC	0	0		0	
COUNTY ROAD	CR 510	MP 014.59	NEAR AIRPORT RD				HAN	VER T		MORRIS	0	1	0	0	1
18295107	SAME DIR-REAR	W- PASS-GOING STRT	W- PASS-SLOW-STOP	OC/WT	DAY	12/21/18	FRI	15:35	FOLLOW TO CLOSE	NONE-DRIVER/CYC	0	1		0	
COUNTY ROAD	CR 510	MP 014.60	AT NJ 24				HAN	VER T		MORRIS	0	0	0	0	1
16190031	SAME DIR-REAR	W- PASS-SLOW-STOP	W- PASS-GOING STRT	CL/DR	DAY	06/01/16	WED	17:19	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0		0	

Crash Data

2011-2013
01/01/2011 TO 12/31/2013

$\begin{aligned} & \text { ROAD SYS } \\ & \text { D L N } \end{aligned}$	T®®EISION	VEHICLE 1 DIR TRAV VEH TYPE, VEH ACTN	VEHICLE 2 DIR TRAV VEH TYPE, VEH ACTN	$\begin{aligned} & \text { WEA } \\ & \text { SUR } \end{aligned}$	LITE	DATE	DOW	TIME	VEH 1 CONTRIB CIRCUMSTANCES	VEH 2 CONTRIB CIRCUMSTANCES	$\begin{aligned} & \text { NO. } \\ & \text { KIL } \end{aligned}$	$\begin{aligned} & \text { NO. } \\ & \text { MAJ } \end{aligned}$		$\begin{aligned} & \text { IURED } \\ & \text { MIN } \end{aligned}$	NO . ACC
COUNTY ROAD	CR 510	MP 014.23	NEAR CR 623 / PARK AV				HAN	OVER TW		MORRIS	0	0		00) 4
12018529	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-START TRAF	CL/DR	DUSK	01/24/12	TUE	15:50	NONE-DRIVER/CYC	DRI INATTENTION	0	0	0	0	
12026503	SAME DIR-REAR	W- PASS-STOP-TRAF	W- SUV-START TRAF	CL/DR	DAY	02/13/12	MON	09:39	NONE-DRIVER/CYC	DISOBEYED TCD	0	0		0	
12037848	SAME DIR-SIDE	W- SUV-STOP-TRAF	W-OTHPV-CHNG LANES	CL/DR	DUSK	02/27/12	MON	17:18	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0	0	0	
12259579	SAME DIR-REAR	W- PASS-SLOW-STOP	W- SUV-SLOW-STOP	RN/WT	DAY	12/17/12	MON	09:04	DISOBEYED TCD	FOLLOW TO CLOSE	0	0	0	0	
COUNTY ROAD	CR 510	MP 014.23	NEAR CR 623 / PARK AV				MOR	RIS TWP		MORRIS	0	0		00	03
12196119	SAME DIR-REAR	E- SUV-SLOW-STOP	E- SUV-START TRAF	CL/DR	DAY	09/14/12	FRI	09:15	DRI INATTENTION	NONE-DRIVER/CYC	0	0	0	0	
13032001	SAME DIR-REAR	E- PASS-START TRAF	E- PASS-STOP-TRAF	CL/DR	DAY	04/23/13	TUE	11:55	DRI INATTENTION	NONE-DRIVER/CYC	0	0	0	0	
13240139	SAME DIR-SIDE	E- PASS-CHNG LANES	E- PASS-NEG CURVE	CL/DR	DAY	09/28/13	SAT	17:13	IMP LANE CHANGE	NONE-DRIVER/CYC	0	0		0	
COUNTY ROAD	CR 510	MP 014.23	AT CR 623 / PARK AVE				HAN	OVER TV		MORRIS	0	0		0	15
11036857	LEFT/U TURN	W- PASS-GOING STRT	E- PASS-LEFT TURN	CL/DR	DAY	03/04/11	FRI	08:36	NONE-DRIVER/CYC	FAIL TO YLD ROW	0	0	0	0	
12017283	RIGHT ANGLE	W- PKUP-GOING STRT	N- PASS-LEFT TURN	RN/WT	DAY	01/23/12	MON	15:22	NONE-DRIVER/CYC	DRI INATTENTION	0	0	0	0	
12018540	SAME DIR-REAR	W- PASS-STOP-TRAF	W- SUV-START TRAF	OC/WT	DAY	01/26/12	THR	07:37	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0		0	0	
12217656	SAME DIR-REAR	W- PASS-STOP-TRAF	W-S2AXL-STOP-TRAF	RN/WT	DAY	10/19/12	FRI	11:58	NONE-DRIVER/CYC	DRI INATTENTION	0	0		0	
13010377	RIGHT ANGLE	N- PASS-LEFT TURN	W- PASS-GOING STRT	CL/DR	DARK	02/07/13	THR	21:03	NONE-DRIVER/CYC	DISOBEYED TCD	0	0		0	
COUNTY ROAD	C CR 510	MP 014.23	AT CR 623 / PARK AVE				MOR	RIS TWP		MORRIS	0	0		02	24
11014612	SAME DIR-REAR	E- PASS-RT TRN-NRD	E- SUV-RT TRN-NRD	CL/DR	DAY	01/24/11	MON	09:44	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0	0	0	
12028533	SAME DIR-REAR	E-STRWT-RT TRN-NRD	E- PASS-RT TRN-NRD	CL/DR	DAY	01/31/12	TUE	09:45	DRI INATTENTION	NONE-DRIVER/CYC	0	0	0	0	
12202774	FIXED OBJECT	E- PASS-GOING STRT	- -	FG/WT	DARK	10/08/12	MON	01:20	DRI INATTENTION		0	0	0	0	
13156461	RIGHT ANGLE	S- SUV-GOING STRT	W- SUV-LEFT TURN	CL/DR	DARK	04/27/13	SAT	20:34	UNKNOWN	UNKNOWN	0	0	0	0	

－	－	r	＊	m	\checkmark	＊	$\stackrel{\square}{\sim}$
－	$\bigcirc \bigcirc$	$\bigcirc 0$	\bigcirc	\bigcirc	HOOOHO	vo	00000000
$\bigcirc 0$	\bigcirc	$\bigcirc 0$	00000	$\bigcirc \bigcirc$	000000	00000	H
$\bigcirc 0$	\bigcirc	$\bigcirc 0$	\bigcirc	\bigcirc	000000	00000	00000000
$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	00000	0000	000000	0000	\bigcirc
				$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ M \\ \hline \end{array}$			
	$\begin{aligned} & \text { Z } \\ & \text { H } \\ & \text { H } \\ & \text { 思 } \\ & \text { 苔 } \end{aligned}$						
云	品	剧	810	品品罟		云吽吕号	
发运	岩	号	$\underset{\sim}{c} \circ$	鲁 윽 응		客 군ํㅇN 이	
¢	¢ $\ddot{\infty}$	勺 $\ddot{\square}$	相 $\ddot{\sim}$	勺呺	品 $\ddot{\infty}$ 动 $\ddot{\sim}$		品 $\ddot{\sim}$
－	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	$\begin{array}{lll} 4 \\ 0 & 0 & 0 \\ 0 \end{array}$				
	告	$\begin{aligned} & \text { 告范 } \\ & \text { 品 } \end{aligned}$					

$\begin{aligned} & \text { ROAD SYS } \\ & \text { D L N } \end{aligned}$	TGEEISION	VEHICLE 1 DIR TRAV VEH TYPE, VEH ACTN	VEHICLE 2 DIR TRAV VEH TYPE, VEH ACTN	$\begin{aligned} & \text { WEA } \\ & \text { SUR } \end{aligned}$	LITE	DATE	DOW	TIME	VEH 1 CONTRIB CIRCUMSTANCES	VEH 2 CONTRIB CIRCUMSTANCES	$\begin{aligned} & \text { NO. } \\ & \text { KIL } \end{aligned}$			$\begin{aligned} & \text { JURED } \\ & \text { D MIN } \end{aligned}$	$\begin{aligned} & \text { NO. } \\ & \text { ACC } \end{aligned}$
COUNTY ROAD	CR 510	MP 014.24	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		1	10
13004976	SAME DIR-REAR	W- PASS-STOP-TRAF	W- SUV-StART TRAF	CL/DR	DAY	01/18/13	FRI	09:36	NONE-DRIVER/CYC	FOLlow to Close	0	0		0	
13026066	SAME DIR-REAR	W- PASS-STOP-TRAF	W- SUV-GOING STRT	RN/WT	DAY	03/25/13	MON	17:14	NONE-DRIVER/CYC	FOLlow to Close	0	0		0	
13201912	SAME DIR-REAR	W- SUV-STOP-TRAF	W- SUV-Chng Lanes	CL/DR	DAY	06/28/13	FRI	07:11	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0		0	
COUNTY ROAD	CR 510	MP 014.25	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		00	3
12001351	SAME DIR-SIDE	W- PASS-GOING STRT	W- PASS-Chng lanes	CL/DR	DUSK	01/07/12	SAT	16:46	NONE-DRIVER/CYC	IMP LANE ChAnge	0	0		0	
13004988	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-CHNG LANES	SN/SN	DARK	01/25/13	FRI	18:23	NONE-DRIVER/CYC	DRI INATTENTION	0	0		0	
13216470	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-START TRAF	CL/DR	DAY	07/29/13	MON	09:28	NONE-DRIVER/CYC	FOLlow to Close	0	0		00	
COUNTY ROAD	CR 510	MP 014.26	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		01	2
11014425	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-StART TRAF	CL/DR	DAY	01/10/11	MON	11:31	NONE-DRIVER/CYC	DRI INATTENTION	0	0		0	
12065216	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-StART TRAF	CL/DR	DAY	04/13/12	FRI	13:24	NONE-DRIVER/CYC	FOLlow to Close	0	0		00	
COUNTY ROAD	CR 510	MP 014.29	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		01	5
11255016	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-CHNG LANES	CL/DR	DARK	11/17/11	THR	18:54	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0		0	
12171821	SAME DIR-SIDE	W- PKUP-GOING STRT	W- PASS-MERGING	CL/DR	DAY	08/24/12	FRI	10:43	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0		00	
12193067	SAME DIR-SIDE	E- PASS-GOING STRT	E- SUV-Chng Lanes	CL/DR	DAY	09/12/12	WED	08:11	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0		0	
12208730	SAME DIR-SIDE	W- PASS-GOING STRT	W-TRPLE-CHNG LANES	OC/DR	DAY	10/08/12	MON	09:31	NONE-DRIVER/CYC	FAIL TO YLD ROW	0	0		0	
13201895	SAME DIR-REAR	W- PASS-GOING STRT	W- SUV-STOP-TRAF	CL/DR	DAY	06/25/13	TUE	07:50	DRI INATTENTION	NONE-DRIVER/CYC	0	0		01	
COUNTY ROAD	CR 510	MP 014.30	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		01	1
13165276	SAME DIR-REAR	W- SUV-SLOW-STOP	W- PASS-SLOW-STOP	CL/DR	DAY	05/15/13		08:55	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0		$0 \quad 1$	
COUNTY ROAD	CR 510	MP 014.31	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		02	1
12118204	SAME DIR-REAR	E- PASS-SLOW-STOP	E- PKUP-GOING STRT	CL/DR	DAY	06/13/12	WED	13:25	NONE-DRIVER/CYC	DRI INATTENTION	0	0		02	
COUNTY ROAD	CR 510	MP 014.32	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		02	3
12217657	SAME DIR-REAR	W- SUV-Going Strt	W- SUV-STOP-TRAF	CL/DR	DAY	10/17/12	WED	17:27	DRI INATtention	NONE-DRIVER/CYC	0	0		01	
12228340	SAME DIR-REAR	W- SUV-STOP-TRAF	W- PASS-SLOW-STOP	CL/DR	DAY	10/22/12	MON	17:07	NONE-DRIVER/CYC	DRI INATTENTION	0	0		0	
12271807	RIGHT ANGLE	W- PASS-GOING STRT	S- UNKN-LEFT TURN	CL/DR	DAY	12/20/12	THR	14:19	NONE-DRIVER/CYC	IMPROPER TURN	0	0		01	
COUNTY ROAD	D CR 510	MP 014.33	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		00	5
11001495	SAME DIR-REAR	U- PASS-STOP-TRAF	W- PASS-STOP-TRAF	CL/DR	DAY	01/05/11	WED	13:41	NONE-DRIVER/CYC	FOLlow to Close	0	0		0	
11083493	SAME DIR-SIDE	W- PASS-GOING STRT	W- PASS-Chng Lanes	CL/DR	DAY	04/26/11	TUE	11:35	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0		0	
11132325	SAME DIR-REAR	W- PASS-MERGING	W- SUV-GOING STRT	OC/DR	DARK	06/23/11	THR	23:05	NONE-DRIVER/CYC	DRI INATTENTION	0	0		00	
11183420	SAME DIR-REAR	w- PASS-MERGING	W- SUV-GOING STRT	CL/DR	DAY	08/24/11	WED	18:11	NONE-DRIVER/CYC	FOLlow to Close	0	0		0	
13009506	SAME DIR-REAR	E- PASS-SLOW-STOP	E- PASS-SLOW-Stop	OC/WT	DAY	01/30/13	WED	16:11	NONE-DRIVER/CYC	NONE-DRIVER/CYC	0	0		00	
COUNTY ROAD	CR 510	MP 014.42	NEAR CR 623 / PARK AVE				HANOVER TWP			MORRIS	0	0		00	2
12193068	SAME DIR-REAR	E- PASS-SLOW-STOP	E- PASS-SLOW-STOP	CL/DR	DAY	09/12/12	WED	08:31	DRI INATTENTION	FOLlow to Close	0	0		0	

ARDLSTRT3	May 18,	2016	NEW JERS B DETAI MILEPO 01	Y DEPAR REAU OF OF MOT T ON 01/2011	RTMENT SAFE OR VE ROUTE 14.130 1 TO	OF TRANS TY PROGRA HICLE ACC $\begin{gathered} 510 \\ \text { TO } 14 \\ 12 / 31 / 20 \end{gathered}$	ORTA S DENTS 600 3	TION			Page 3						
$\begin{aligned} & \text { ROAD SYS } \\ & \text { D L N } \end{aligned}$	©®®EEISION	VEHICLE 1 DIR TRAV VEH TYPE, VEH ACTN	VEHICLE 2 DIR TRAV VEH TYPE, VEH ACTN	$\begin{aligned} & \text { WEA } \\ & \text { SUR } \end{aligned}$	LITE	DATE	DOW	TIME	VEH 1 CONTRIB CIRCUMSTANCES	VEH 2 CONTRIB CIRCUMSTANCES	NO. NO.		INJURED				$\begin{aligned} & \text { NO. } \\ & \text { ACC } \end{aligned}$
COUNTY ROAD	CR 510	MP 014.42	NEAR CR 623 / PARK				HANO	OVER T		MORRIS	0	0			0	0	2
13150654	SAME DIR-REAR	W- PASS-STOP-TRAF	W- PASS-GOING STRT	CL/DR	DAY	04/26/13	FRI	16:57	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0			0	0	
COUNTY ROAD	CR 510	MP 014.43	NEAR CR 623 / PARK				HANO	OVER T		MORRIS	0	0			0	1	2
12056177	SAME DIR-REAR	W- SUV-SLOW-STOP	W- PASS-SLOW-STOP	CL/DR	DAY	03/21/12	WED	17:58	NONE-DRIVER/CYC	FOLLOW TO CLOSE	0	0			0	1	
13207531 S	SAME DIR-SIDE	W- SUV-GOING STRT	W- PASS-CHNG LANES	CL/DR	DAY	07/18/13	THR	07:22	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0			0	0	
COUNTY ROAD	CR 510	MP 014.48	NEAR CR 623 / PARK				HANO	OVER T		MORRIS	0	0			0	0	1
13157937 S	SAME DIR-REAR	W- SUV-SLOW-STOP	W- PASS-CHNG LANES	CL/DR	DAY	04/30/13	TUE	17:26	NONE-DRIVER/CYC	IMP LANE CHANGE	0	0			0	0	
COUNTY ROAD	CR 510	MP 014.60	AT NJ 24				HANO	OVER T		MORRIS	0	0			1	1	1
13165268 F	FIXED OBJECT	E- PASS-GOING STRT	E- PASS-GOING STRT	RN/WT	DAY	05/23/13	THR	09:24	NONE-DRIVER/CYC	UNSAFE SPEED	0	0			1	1	

Appendix "G"

Traffic Counts and Traffic Data

Figure 1- Intersection Turning Movement Traffic Volumes Columbia Turnpike (CR 510) and Park Avenue (CR 623) Morris and Hanover Townships, Morris County, NJ
Counts conducted Thursday, October 17, 2019

		CR 510 EASTBOUND				CR 510 WESTBOUND				CR 623 NORTHBOUND				CR 623 SOUTHBOUND			
		LEFT	THRU	RIGHT	PEDS												
7:00 AM	to 7:15 AM	0	156	27	0	89	72	10	0	11	27	75	0	39	94	7	0
7:15 AM	to 7:30 AM	4	221	61	0	302	99	27	0	12	56	77	0	78	122	5	0
7:30 AM	to 7:45 AM	4	215	66	0	378	128	43	0	30	73	138	0	110	196	12	0
7:45 AM	to 8:00 AM	5	228	45	0	429	162	45	0	43	97	136	0	102	176	7	0
8:00 AM	to 8:15 AM	5	177	68	0	392	132	24	0	34	79	142	0	66	203	6	0
8:15 AM	to 8:30 AM	0	197	102	0	324	136	31	0	12	72	123	0	75	202	6	0
8:30 AM	to 8:45 AM	6	174	56	0	300	112	20	0	26	73	128	0	71	179	8	0
8:45 AM	to 9:00 AM	3	175	102	0	347	166	28	0	21	92	120	0	47	165	8	0
7:30 AM		27	1543	527	0	2561	1008	226	0	189	569	939	0	588	1337	59	0
	to 8:30 AM	14	817	281	0	1523.93	559.226	142.296	0	119	321	539	0	353	777	31	0
	PHF	0.70	0.90	0.69		0.89	0.86	0.80		0.69	0.83	0.95		0.80	0.96	0.65	
hV Volume		0	13	2		0	0	0		1	11	15		7	19	9	
	\%HV	0.0\%	1.6\%	0.7\%		0.0\%	0.0\%	0.0\%		0.8\%	3.4\%	2.8\%		2.0\%	2.4\%	29.0\%	
Peak hour Total		14	817	281		1524	559	142		119	321	539		353	777	31	
4:00 PM	to $4: 15 \mathrm{PM}$	5	224	29	0	168	243	78	0	45	249	255	0	83	53	4	0
4:15 PM	to $4: 30 \mathrm{PM}$	8	291	21	0	147	217	119	0	39	238	312	0	80	71	6	0
4:30 PM	to $4: 45 \mathrm{PM}$	4	279	18	0	228	279	173	0	55	249	260	0	95	60	7	0
4:45 PM	to 5:00 PM	6	218	18	0	194	284	143	0	15	258	243	0	94	65	7	0
5:00 PM	to $5: 15 \mathrm{PM}$	6	224	9	0	175	270	145	0	51	214	339	0	106	95	5	0
5:15 PM	to 5:30 PM	2	214	30	0	261	391	191	0	50	235	343	0	124	95	7	0
5:30 PM	to 5:45 PM	11	258	23	0	207	253	120	0	28	194	276	0	121	112	10	0
5:45 PM	to 6:00 PM	16	181	29	0	168	227	102	0	40	249	242	0	74	77	5	0
5:00 PM		58	1889	177	0	1547	2164	1072	0	323	1886	2270	0	777	628	51	0
	to 6:00 PM	35	877	91	0	810.586	1140.49	558.027	0	169	892	1200	0	425	379	27	
	PHF	0.55	0.85	0.76		0.78	0.73	0.73		0.83	0.90	0.87		0.86	0.85	0.68	
HV VOLUME$\% H V$		1	5	0		0	0	0		1	6	6		2	3	0	
		2.9\%	0.6\%	0.0\%		0.0\%	0.0\%	0.0\%		0.6\%	0.7\%	0.5\%		0.5\%	0.8\%	0.0\%	

Figure 1 - Intersection Turning Movement Traffic Volumes Columbia Turnpike (CR 510) and Park Avenue (CR 623) Morris and Hanover Townships, Morris County, NJ
Counts conducted Wednesday, April 27, 2016

	CR 510 EASTBOUND				CR 510 WESTBOUND				CR 623 NORTHBOUND				CR 623 SOUTHBOUND			
	LEFT	THRU	RIGHT	PEDS												
7:00 AM to 7:15 AM	11	130	26	1	94	72	7	0	21	48	71	0	37	147	19	0
7:15 AM to 7:30 AM	8	186	54	0	319	99	19	0	15	47	72	0	93	150	8	0
7:30 AM to 7:45 AM	11	165	58	0	400	129	31	0	14	60	89	0	102	211	2	0
7:45 AM to 8:00 AM	14	186	94	0	454	163	32	0	16	92	107	0	93	160	8	0
8:00 AM to 8:15 AM	12	184	96	2	415	133	17	0	20	59	81	0	94	194	15	0
8:15 AM to 8:30 AM	6	163	101	0	343	137	22	0	18	91	101	0	72	167	10	0
8:30 AM to 8:45 AM	15	154	116	0	317	113	14	0	31	82	105	0	44	166	2	0
8:45 AM to 9:00 AM	8	124	80	1	367	167	20	0	22	84	103	0	42	205	8	0
	85	1292	625	4	2709	1013	162	0	157	563	729	0	577	1400	72	0
7:30 AM to 8:30 AM	43	698	349	2	1612	562	102	0	68	302	378	0	361	732	35	0
PHF	0.77	0.94	0.86		0.89	0.86	0.80		0.85	0.82	0.88		0.88	0.87	0.58	
HV VOLUME	1		1		25	20	6		5		13		3	6	5	
\%HV	2.3\%	0.9\%	0.3\%		1.6\%	3.6\%	5.9\%		7.4\%	2.6\%	3.4\%		0.8\%	0.8\%	14.3\%	

HV VOLUME
$\% H V$

4:00 PM	to	4:15 PM	6	141	18	0	95	183	85	0	57	159	241	0	43	44	9	0
4:15 PM	to	4:30 PM	6	144	21	0	83	163	130	0	46	158	218	0	55	66	15	0
4:30 PM	to	4:45 PM	6	175	32	0	129	210	189		38	142	138	0	72	54	8	0
4:45 PM	to	5:00 PM	16	201	13	0	110	214	156	0	40	148	159	0	74	78	9	0
5:00 PM	to	5:15 PM	9	222	24	0	99	203	158	0	40	186	173	0	67	65	13	0
5:15 PM	to	5:30 PM	11	261	15	0	148	294	208	0	28	148	178	0	117	104	20	0
5:30 PM	to	5:45 PM	9	235	12	0	117	190	131	0	38	179	186	0	80	92	20	0
5:45 PM	to	6:00 PM	19	246	16	1	95	171	111	0	36	189	177	0	89	95	20	1
			82	1625	151	1	876	1628	1168	0	323	1309	1470	0	597	598	114	1
5:00 PM	to	6:00 PM	48	964	67	1	459	858	608	0	142	702	714	0	353	356	73	1
	PHF		0.63	0.92	0.70		0.78	0.73	0.73		0.89	0.93	0.96		0.75	0.86	0.91	
	VOL	ume	${ }^{1}$		1		4	14	8		1	1	3		3	3	0	

ATR count summary

(

~ $\stackrel{\text { 岂 }}{\substack{\mid}} \mid$
00000000000 Hr 000 Hr

00

蟼镸
 の

部鳪

＝ 3

 教

－Hix

㖣崽

6
O
皆
$\sim \stackrel{0}{\sim}$

000000000000000100000000000000000000010000000000

n

- 路

 M

$\rightarrow \quad \stackrel{\text { un }}{\mathbf{\omega}}$

ก

EASTBOUND TRAFFIC VOLUMES (APPROACHING THE INTERSECTION)																
	class	BIKES	$\frac{{ }_{2}^{2}}{\frac{\text { CARS } \alpha}{\text { TRALLERS }}}$	$\begin{gathered} 3 \\ \underline{2 A X I E} \\ \hline \text { LONG } \end{gathered}$	BUSES	$\begin{gathered} 5 \\ \underline{2} \begin{array}{c} \text { AXLE } \end{array} \\ \hline 6 \text { TIRE } \end{gathered}$	$\begin{gathered} { }^{6} \\ \frac{6 \times X I E}{} \\ \text { SINGIE } \end{gathered}$	$\begin{gathered} 7 \\ \text { 4AXIE } \\ \hline \text { SNGLIE } \end{gathered}$	$\begin{gathered} 8 \\ \begin{array}{c} 8 \text { AXLE } \\ \hline \text { DOUBLE } \end{array} \end{gathered}$	$\begin{gathered} 9 \\ \begin{array}{c} 9 \text { AXLE } \\ \text { DOUBLE } \end{array} \end{gathered}$	$\begin{gathered} 10 \\ \frac{6+\text { AXLE }}{\text { DOUBLE }} \end{gathered}$	$\begin{gathered} 11 \\ \frac{\sigma \text { AXLE }}{} \\ \hline \text { MULTI } \end{gathered}$	$\begin{gathered} 12 \\ \frac{6 \text { AXLE }}{} \\ \hline \text { MULTT } \end{gathered}$	$\begin{gathered} 13 \\ \frac{6+\text { AXLE }}{} \\ \hline \text { MULTI } \end{gathered}$	$\begin{gathered} 14 \\ \text { UNCLASS- } \\ \hline \text { IFIED } \end{gathered}$	TOTAL
$\begin{aligned} & 5 / 4 / 2016 \\ & \text { WEDNESDAY } \end{aligned}$	12:00 AM	6	23	0	0	0	0	0	0	0	0	0	-	0	0	29
	1:00 AM	4	7	1	0	0	0	0	0	0	0	0	0	0	0	12
	2:00 AM	2	5	0	0	0	0	0	0	0	0	0	0	0	0	7
	3:00 AM	1	10	0	0	2	0	0	0	0	0	0	0	0	0	13
	4:00 AM	7	13	0	0	0	0	0	0	0	0	0	0	0	0	20
	5:00 AM	13	61	0	0	0	1	0	0	0	1	0	0	0	0	76
	6:00 AM	30	255	0	1	1	4	0	0	2	1	0	0	0	2	296
	7:00 AM	54	687	5	0	0	13	2	1	1	0	0	0	1	18	782
	8:00 AM	58	752	13	3	4	11	1	1	4	0	0	0	0	131	978
	9:00 AM	41	571	7	3	2	11	4	0	3	1	0	0	0	27	670
	10:00 AM	33	364	7	0	4	2	1	0	0	0	0	0	0	3	414
	11:00 AM	25	377	6	0	4	1	0	0	0	0	0	0	0	4	417
	12:00 PM	38	412	7	0	3	5	1	0	1	0	0	0	0	6	473
	1:00 PM	30	392	5	0	3	2	0	0	1	0	0	1	0	6	440
	2:00 PM	39	402	5	0	1	4	1	1	0	0	0	0	0	7	460
	3:00 PM	40	481	10	0	2	7	1	0	0	0	0	0	0	5	546
	4:00 PM	45	643	4	2	4	5	2	0	2	0	0	0	0	20	727
	5:00 PM	45	710	6	0	2	9	2	0	3	1	0	0	0	49	827
	6:00 PM	49	498	3	0	0	5	0	0	0	0	0	0	0	8	563
	7:00 PM	50	268	1	0	0	1	1	0	0	0	0	0	0	2	323
	8:00 PM	29	198	0	0	0	1	0	0	0	0	0	0	0	1	229
	9:00 PM	27	136	0	0	0	1	0	0	0	0	0		0	0	164
	10:00 PM	14	63	1	0	0	0	0	0	0	0	0	0	0	1	79
	11:00 PM	22	75	0	0	0	0	0	0	0	0	0	0	0	0	97
THU-WED		4505	45405	505	${ }^{43}$	213	452	56	20	74	73	3	11	13	127	52650

00

000000001000000001000000000000000000000000000000

$0000000100000000 N 010000000000010 N 001000000100000$

68856	GE¢E	IT	ε	\pm	82	82	908	$\underline{1}$	202	200	69	$t / z s$	20108	ors	nH－	7tal
оєโ	0	0	0	0	0	0	0	0	I	0	2	s	TZI	I	Wd 00：It	
८દ	0	0	0	0	0	0	0	0	0	0	I	8	822	0	Wd 00：0t	
ઘृદ	0	0	0	0	0	0	0	0	โ	9	0	¢	208	0	Wd 00：6	
sct	\llcorner	0	0	0	0	0	0	0	0	г	r	02	ャて	0	Wd 00：8	
sz9	6	0	0	0	0	0	0	0	ז	\dagger	0	$\varsigma^{\text {¢ }}$	¢Ls	โ	Wd 00：L	
$6 \mathrm{6tT}$	82	0	0	0	0	0	г	0	ז	\llcorner	ε	os	850	0	Wd 00：9	
${ }_{689}$	60τ	0	0	โ	0	0	ε	0	9	0t	s	¢8	85tt	$\varepsilon \tau$	Wd 00：s	
929	29	0	0	0	0	0	¢	¢	ז	$9{ }^{\text {¢ }}$	I	${ }^{6}$	OStI	от	Wd 00：	
เยโ̇	02	I	0	0	I	0	โ	0	I	62	r	86	$0<6$	8	Wd 00：	
te6	ャ2	0	0	0	0	0	r	0	ε	ยโ	\square	$9{ }^{6}$	¢ヶ8	\llcorner	Wd 00：z	
406	Iz	0	0	0	0	ז	\dagger	0	z	て！	0	Ts	808	8	Wd 00：	
526	Iz	0	0	0	0	ז	s	0	¢	て！	r	89	608	9	Wd 00：ż	
＜9	て！	0	0	0	0	¢	I	0	0	LI	s	$\varepsilon ¢$	189	โ	Wvooti	
8 ¢9	It	0	0	0	0	0	r	I	¢	8 L	9	09	9 ts	ε	Wv 00：0t	
عLL	9 92	0	0	0	0	โ	て	0	\downarrow	ז	\checkmark	6ε	LLS	6	W＊00：6	
b6L	¢¢	0	0	0	I	¢	ε	0	It	0t	r	โ	LLT	$\varepsilon \tau$	W＊00：8	
8tIt	6ε	0	0	0	て	0	て	ธ	て	${ }^{\text {o }}$	9	29	8 ¢0¢	9	W＊00：L	
8 ¢9	$9{ }^{\text {¢ }}$	0	0	0	0	0	ז	I	r	9	ธ	$\varepsilon \downarrow$	$8 L 9$	0	W＊00：9	
8 tI	ε	0	0	0	0	0	て	0	โ	s	0	て	szt	0	W＊00：s	
5ε	โ	0	0	0	0	0	โ	0	0	ז	0	9	92	0	W＊00：\％	
st	0	0	0	0	0	0	0	0	ธ	I	0	โ	て	0	W＊00：	
गT	0	0	0	0	0	0	0	0	0	0	0	r		0	W＊00：z	
вт	0	0	0	0	0	0	0	0	0	0	0	r	$9{ }^{\text {9 }}$	0	W＊00：T	Avasunht
98	0	0	0	0	0	0	0	0	0	I	I	r	โ	${ }^{\text {t }}$	W＊00：zI	$9702 / 88 / 0$
T101	व3）	117กW	แフกW	117nW	379nod	97anod	sanod	\＃jons	TITNIS	38119	573n9	9NO7	รษ37｜ves	इड＞＞19		
	－55tionn		37XV9	\＃アV｜	\＃\＃XV＋9	97x＋ 9	9TXV ${ }^{\text {P }}$	जアヤロ	जアヤヲ	9Tx＋2		जx｜z	¢54षJ			
	¢	£โ	zI	It	OT	6	8	\llcorner	9	9	\dagger	ε	て	โ	5575	

CR 623 (PARK AVE) NORTHBOUND APPROACHING CR 510 (COLUMBIA TURNPIKE)
AUTOM ATED TRAFFIC RECORDER (ATR) COUNTS PERFORM ED THURSDAY, JUNE 11, 2015 THROUGH WEDNESDAY, JUNE 17, 2015

の䐻家

DAILY															
FRI	45	5922	493	31	129	18	1	23	3	2	1	1	0	102	6771
SAT	6	3194	283	6	56	0	0	5	0	0	0	0	0	18	3568
SUN	21	2503	165	0	25	1	1	2	0	0	0	0	0	12	2730
MON	63	5597	468	39	119	13	2	33	3	3	0	0	0	241	6581
TUE	67	7053	549	23	169	22	3	25	4	4	2	1	0	246	8168
WED	56	5744	480	24	121	14	3	28	3		2	0	1	268	6747
THU	52	6251	493	29	144	11	4	21	2	3	1	0	0	165	7176
TOTALPRJ-THU	310	36264	2931	152	763	79	14	137	15	15	6	2	1	1052	41741
PCT OF TOTAL	0.76\%	89.12\%	7.20\%	0.37\%	1.88\%	0.19\%	0.03\%	0.34\%	0.04\%	0.04\%	0.01\%	0.00\%	0.00\%	---	100.00\%
REDIST. UNCLASSIFIED	8	938	76	4	20	2	0	4	0	0	0	0	0	0	1052
REMSEDTOTAL	318	37202	3007	156	789	81	14	141	15	15	6	2	1	0	$4174]$
PCT. PER CLASS	0.76\%	89.12\%	7.20\%	0.37\%	1.88\%	0.19\%	0.03\%	0.34\%	0.04\%	0.04\%	0.01\%	0.00\%	0.00\%	0.00\%	
CLASS SUMMARIES		97.1\%		0.37\%	$\stackrel{2.1 \%}{\text { SINGLE UNIT TRUCK }}$				0.4\%			0\%		---	
		PASS. CARS		BUS				DOUBLE TRUCK			TRIPLE TRUCK			---	

~ $\stackrel{\text { 岂 }}{\substack{\mid}} \mid$

a櫧
000

00

二部慮
000

\rightarrow 部

00

00

$000000000000000000 \pi 000000000000000100000000000000$

$\infty \stackrel{\stackrel{u}{x}}{\substack{\underset{㐅}{x}}} \mid$

ค $\stackrel{\text { üd }}{\substack{x}}$
$000000 N 000 \mathrm{mH}-10000000 \mathrm{H} 00000000000000 \mathrm{NO} 00000000000$ ）

 0
－ $\begin{array}{r}u \\ \stackrel{u}{0} \\ \hline\end{array}$
数舞
$\sim \underset{\sim}{\sim}$

를
N
i
in
in
3

00

00

000000000000000001000000000000000000000000000000

の $\stackrel{\text { un }}{\substack{x}}$

$0000000 \mathrm{HNONH000000000000000000000-100000000000000}$

م

+ $\begin{array}{r}\text { u } \\ \mathbf{\omega} \\ \hline\end{array}$

：
～$\stackrel{\text { 岂 }}{\substack{\mid}} \mid$
00二罯高
000
or
00

∞
－羄
－블

－喘
000000 HNOOHNOOMNOO0000H000000000000H00000000000
－異皆

\rightarrow 部

$5 / 14 / 2016$
SATURDAY

00

00

$0000000-10000000000000000000000010000000100000000$

の $\stackrel{\text { u }}{\substack{x}}$

$\mathfrak{\sim}$

$+\quad \begin{aligned} & \text { un } \\ & \text { • }\end{aligned}$

~ $\stackrel{\sim}{\sim}$

 |

- $\quad \begin{aligned} & \text { 年 } \\ & \mathbf{\omega}\end{aligned}$

00

00

000000000000000000000000000000000000000100000000

- 枵
m $\underset{\sim}{\text { u }}$

ร

期
\approx～岗
00

000

00

の䅗㟶
∞

－
○न○○○नmんト
م
－風

～

－M M
 5／14／ 2016
SATURDAY

$00000000-10-10000-1000000000000000-1000000-1000000000$

00

00

0000000000000 1000000000000000000 1000000 100000000000

の $\stackrel{\text { u }}{\substack{x}}$
م

ค $\stackrel{\text { 岗 }}{\substack{x}}$
$0 \stackrel{\text { 岂 }}{\substack{x}}$

$+\quad \begin{array}{r}\text { u } \\ \hline 0\end{array}$

－$\quad \begin{aligned} & \text { 年 } \\ & \mathbf{\omega}\end{aligned}$

00

00

の $\stackrel{\text { un }}{\substack{x}}$

م

م
00000000 H0 10 0000000000000000000000000000000000000

－岗

～$\stackrel{\rightharpoonup}{\sim}$

mo

$\rightarrow \quad$| 言 |
| :---: |
| $\mathbf{\omega}$ |

00

00

00

－$\stackrel{\text { uld }}{\substack{x}}$
00
n 岂岗拰
0
－哰

$\sim \stackrel{\rightharpoonup}{\sim}$
00

00
$\rightarrow \quad \stackrel{\text { 䲞 }}{\text {（ }}$

average daily traffic volumes

Project Desc.:

Date:	Ci/22/2016 Time: Performed by: 8:00 AM - 9:00 AM

Columbia Turnpike (CR 510) and Park Avenue (CR 623) Morris and Hanover Townships, M orris County, NJ Car License Plates O-D Study

| | | 510WB left turn onto Park SB |
| :---: | :---: | :---: | :---: |
| Ramp from 24E to 510w | Lane 1 | Lane 2 |

| | | 510WB left turn onto Park SB |
| :---: | :---: | :---: | :---: |
| Ramp from 24E to $510 w$ | Lane 1 | Lane 2 |

Ramp from 24E to 510W		510WB left turn onto Park SB	
		Lane 1	Lane 2
NY	3868	24K9	FPS
NJ	BJM	EPK	51W
NY	833	ESO	F2S
NJ	FZC	BAE	53X
NJ	CKY	Z9N	
NJ	DOZ	4774	G8R
NY	6747	FGV	4DV
NJ	EXB	3556	DTD
NJ	76C	GCX	4556
NY	9315	GKW	AHZ
NJ	642	51B	$50 Z$
NJ	GCL	EDM	H96
NJ	EWY	FSK	15F
NY	3124	Z6K	67W
NY	6775	7423	344
NJ	CWS	ENV	EFW
NJ	G39	BMA	FLP
NJ	ELK	DMT	ERB
PA	9113	CM R	64P
NJ	F5Z	HSS	ARV
NY	670M E	192	ERC
MD	6376	OCD	EPZ
MD	244	DTK	FZF
NY	4806	755	CCP
NJ	FRR	ENB	EAG
NJ	EWV	FDD	CH4
NJ	V49	GDZ	GCC
NJ	2039	BPM	FWA
NJ	FYV	FNY	D576
NJ	BAC	FPN	4260
NJ	79N	ERF	FBC
NY	4724	FVN	AHG
NJ	FXS	GOM	DMD
PA	N40	EPM	60 U
NJ	DMZ	39V	EAC
VA	2489	FGZ	BL5
NJ	GOK	PYX	87K
NJ	911	FYE	C6Z
NJ	FKB	1BTT	CDV
CT	G24	GM H	ANT
NJ	902	GTX	356A
NJ	FGV	GDK	GJ1A
NY	2423	FZF	CHS
NJ	ENV	GCM	34D
NJ	DYZ	AAJ	GAA
NJ	E50	EAK	CRP
NJ	GRR	FHR	C4W

| | | 510WB left turn onto Park SB |
| :---: | :---: | :---: | :---: |
| Ramp from 24E to 510 F | Lane 1 | Lane 2 |

Ramp from 24E to 510W		510WB left turn onto Park SB	
		Lane 1	Lane 2
NJ	EWT	DTC	GEU
NJ	G1X	DUP	EWS
NJ	49K	M S3	AYZ
NJ	AMP	DTE	FJP
NJ	ENY	16 S	BSP
NY	2873	FJP	AGX
NJ	38 U	EME	FPS
CT	2424	FJX	GAX
NJ	85 T	DR4	EXJ
NJ	915	DXF	DYX
NJ	EST	EUV	DYA
NJ	GAL	ALA	DRU
NJ	DMC	FDM	462
NJ	FXE	G2H	PWB
NJ	59P	Z6X	FVJ
NJ	GNL	AGO	FBU
NJ	DWV	FZL	ZDZ
NJ	BPK	EXM	CFX
NJ	CHT	CMT	EDU
NJ	FJP	EFJ	782
NJ	BUX	BTO	DWT
NJ	GGB	FSC	CDL
NJ	FHR	DTT	CDK
NJ	BPX	SGM	EDL
NJ	FDM	GDX	FVW
NY	9900	EWL	DLP
NJ	AXP	ACR	1VY
MD	9441	GAZ	ZOW
NJ	FJ7	CRJ	FGK
NJ	CTG	CEC	95K
NJ	DYX	BRX	CJB
NJ	49H	G5M	9 CH
NJ	FYS	CXN	GFD
NY	1144	B4X	GBW
MD	165	EFG	G8W
NJ	BZV	GAS	FM D
NJ	70]	BZT	DCC
MA?	5274	AD0	49K
NJ	88C	FDC	EMJ
NJ	FYE	GHR	GFK
NJ	EMC	EJB	DSJ
NJ	DDN	148	EDV
NJ	AAJ	BM N	FCX
NJ	530	2JE	38J
NJ	48 Y	46 H	E69
NY	8874	EJS	G2H
NY	7235	EWN	FYM

Ramp from 24E to 510W		510WB left turn onto Park SB	
		Lane 1	Lane 2
NJ	CMF	DDG	ERP
NJ	366	FDH	7BP
NJ	GAX	EPP	AMR
NJ	AGD	KPZ	EST
NJ	30M	S4V	DBZ
CT	VH9	36K	FAE
NJ	CVB	FYF	587 S
NJ	52 C	FLP	GFB
NJ	DVE	DGC	45 T
NY	3814	B2E	DHF
NJ	EVW	EGE	111
NJ	GDZ	FDJ	JDL
NJ	CMY	GFX	AHW
NJ	BTW	FGK	11M
NJ	EJ3	ABT	1519
MD	3150	GBK	CHT
PA	4856	GRP	FVP
NJ	DTT	30M	GT2
NJ	EGE	9TN	CCX
NJ	AVC	GFJ	DRN
NY	8057	F2Y	ERH
NJ	CEC	GSX	DEC
NJ	98Y	FSG	CBN
NJ	GEK	DXH	CHR
NJ	EZA	DMF	BFBS
NJ	FDJ	EPL	CUU
NJ	DZX		FTV
NY	5588		ERJ
PA	5736		567C
NJ	GBP		WBS
NJ	GEB		BSJ
NJ	30 H		542
NJ	FHX		29D
NJ	CAX		53D
NJ	ENC		FJJ
NJ	EWJ		DGP
NJ	GFJ		FZE
NJ	FGK		EMD
NY	67BR		GNH
NJ	EUD		COS
NJ	BAY		GBY
NJ	76W		BVW
NJ	FZY		PBU
NJ	11K		EYL
NJ	BCX		FBX
NJ	DHG		BWU
NJ	ECS		GAX

Ramp from 24E to 510W		510WB left turn onto Park SB
		Lane 1 Lane 2
NJ	132	6EB
NJ	EPL	FYE
NJ	FPS	ACB
NJ	M 53	FAA
NJ	DTE	37S
NJ	GDY	CHX
NJ	EWL	44X
NJ	BRM	EJZ
NJ	AM G	AVF
NJ	DSF	GBE
NJ	ACR	DPP
NJ	GAZ	3BJ
NY	8414	73W
NJ	GRJ	E6X
NJ	ENP	CHP
NJ	EM D	CAE
VA	1817	CEF
CT	Z7L	70A
NJ	GBA	ELB
		14L
		FPG
		FJJ
		D7F
		GNN
		UBN
		9GY
		87B
		PZX
		EMF
		GFB
		FZL
		FHX
		GCM
		FKT
		967
		AFJ
		DHG
		GDG
		M CP
		FPP
		9AJ
		ABW
		DBM
		DBT
		FAY
		DGM
		FDR

| 510WB left turn onto Park SB | |
| :---: | :---: | :---: |
| Lane $\mathbf{1}$ | Lane 2 |

Total volume of ramp count: 291 cars
Total matched: 129 cars
Total \%: 44\%
*Based on observation, and difficulty in tracking high-volume two-lane left turn movement, assumed percentage increased to 90%.

IH ENGINEERS, P.C.
www.ihengineers.com

Project Desc.:
Date:
Time:
Performed by:

$\frac{\text { Columbia Turnpike }}{\text { 6/22/2016 }}$
5:00 PM - 6:00 PM
NL, Imran, Colin

Columbia Turnpike (CR 510) and Park Avenue (CR 623)
 Morris and Hanover Townships, M orris County, NJ
 Car License Plate O-D Study

Ramp from 24E to 510W		510WB left turn onto Park SB	
		Lane 1	Lane 2
MD	8834	GF5	GAE
NJ	97M	END	1GN
NJ	707	ZV1	S8M
NJ	71K	24D	B1Y
NJ	GEK	392	$367 Z$
NJ	GLA	GRX	DTZ
NJ	8JM	EVE	ABZ
NJ	AEY	ASJ	GTD
NJ	$69 Y$	DMB	EYE
NJ	DEN	ASF	BBN
PA	9473	FFX	6417
NJ	973	BVD	ELN
NJ	94N	DEZ	GY
NJ	FLW	SON	BYM
NJ	FLS	GNC	93T
NJ	FRH	FVJ	GJU
NJ	FWY	EKE	FBJ
NJ	FPE	GM F	AZP
NJ	FNF	7D7	8514
NJ	DCY	71F	FZY
NJ	KLA	ASF	35MH
NJ	82N	GLA	V99
NJ	GAD	255	A2Y
NJ	DFB	BJM	9AA
NJ	GKV	DSM	FMZ
NJ	EVP	AEY	73W
NJ	EVN	DEN	GHE
PA	2855	DER	BTD
NJ	BVG	FM D	AUX
NJ	BXY	FLS	EVP
NJ	FPN	ENV	F7]
NJ	ELY	76K	BVG
NJ	53A	G23G	FPM
NJ	DKN	CNT	ELY
NJ	CHC	OCY	BLJ

Ramp from 24E to 510W			510WB left turn onto Park SB	
			Lane 1	Lane 2
NJ	DTF		GA0	72B
NJ	FPK		GXV	CHC
NJ	FRJ		G39	DTF
NJ	FEP		CJN	FPK
NJ	ERX		BXY	$41 T$
NY	8549		FPN	ERX
NJ	EEH		CGZ	CJX
NJ	4380		S3A	EEH
NJ	28N		15C	FSS
NJ	F5S		CWW	BWU
NJ	23F		FRJ	23F
NJ	88B	\wedge	91V	EYH
NJ	EZV	\wedge	43BD	$34 Y$
NJ	48R		DTC	DGZ
NJ	GRD	\wedge	DEN	GTA
NJ	EZY		BZE	FMD
NY	1138		6ZV	FFB
NJ	947		ETT	GFZ
NJ	35 S		GPJ	35 S
NJ	EYD		46R	45
NJ	DYS	\wedge	EZY	ESW
NJ	EZK		94S	EYD
NJ	DYE		CCR	D45
MD	8293	\wedge	B4Z	7086
NJ	ALP		48V	ESN
NJ	ESJ		EZK	EYW
NJ	EYD		BJL	FRG
MD	467	\wedge	FVR	52P
NJ	997F	\wedge	ES	39 T
NJ	FLS	\wedge	ALP	ARE
NJ	G78		DUB	ESM
NJ	EZU		FCX	44
NJ	FEX		DN5	ETH
NJ	FVV		24F	GKA
NY	6428		ELF	2607
NJ	58 F	\wedge	C7B	PUT
NJ	C...M	\wedge	G78	FSE
NJ	CXU		FJM	CM P
NJ	415		FVK	ESK
NJ	93		JKN	EFJ
NJ	ERN	\wedge	DEV	FCP
NJ	GCG	\wedge	GBC	EDP
NJ	FFR	\wedge	46M	DZX
NJ	FCL	\wedge	47A	9C9

Ramp from 24E to 510W			510WB left turn onto Park SB	
			Lane 1	Lane 2
NY	7262	\wedge	G2T	CYX
NJ	79 S	\wedge	879	DLP
NJ	GLN		FGG	57E
NJ	80E		OAH	795
NJ	CJD		34D	GLN
NJ	GAU		EVN	CJ8
NJ	ELF		GGK	9BJ
NJ	CFB		GM D	4JM
NJ	C5S		992	DKS
NJ	41W	\wedge	2616	3410
NJ	3410		BFW	DEE
NJ	FJW		ALZ	DM T
NJ	88R		4552	FYL
NJ	20P		GNF	253
NJ	DEU		99D	273
NJ	DKR		EB6	CVM
NJ	4GN		AES	FLR
NJ	. 5	\wedge	EAF	7628
NJ	53P		GGF	580
MD	14 U		CVR	23L
NJ	58D	\wedge	GJP	3LY
NJ	11W	\wedge	CCV	11W
NJ	C5Z	\wedge	59X	$16 Z$
NJ	BYS		83K	GCF
MD	370		4DS	564X
NJ	DAH		DHF	95C
NJ	81M		GLW	15P
NJ	EAF		EVL	80C
NJ	DYV		FGR	J1C
NJ	489		FWD	GMJ
NJ	GMO	\wedge	BBJ	5251
NJ	CHD		CCS	GGW
NJ	GXL	\wedge	FVA	CWM
NJ	997		BHK	GAZ
MD	1470		FKK	DDY
NJ	20 V		BXN	VRP
NJ	EHM	^	BTJ	GHC
NJ	E74		DYL	EM 1
NJ	BHW	\wedge	57N	CEP
NJ	ALZ		FPM	GEP
NJ	4552	\wedge	FLD	CCR
NJ	GNF	\wedge	DGF	BYV
NJ	EBB		GAV	DMJ
NJ	99P		ELV	462

Ramp from 24E to 510W			510WB left turn onto Park SB	
			Lane 1	Lane 2
IN		\wedge	EBH	FRP
NJ	YRP	\wedge	DVG	DNJ
NJ	GGF	\wedge	EUA	FYT
NJ	47V	\wedge	36R	591K
NJ	AES	\wedge	EZF	ETZ
NJ	GEF	\wedge	AFG	EEA
NY	395C	\wedge	ENJ	FBM
NJ	CVR	\wedge	FBH	GGF
NJ	GJR	\wedge	BLC	ERG
NJ	59X		FAC	BM X
NJ	ETB		DLH	BLN
NJ	EWS		FSC	EPO
NJ	CJD	\wedge	SSA	GR9
NJ	ERG		54J	GGL
NJ	FYT		ESK	GMZ
NJ	FMF	\wedge	GTE	754
NJ	GAF	\wedge	CYC	CCH
NJ	GLW	\wedge	7936	EWD
NJ	EFM	\wedge	FWY	EGP
NJ	FWD	\wedge	CLF	EWR
NJ	BBJ		GJR	EFS
NJ	EEA		DLS	GEJ
NJ	FVA		16R	EWP
NJ	GOK		F3V	92 T
NJ	GGF		761	125
NJ	BHK		CED	FXP
NJ	BXN		J14	ZBC
NJ	AZV		36 V	335
NJ	FFU		49E	DFA
NJ	EPD	\wedge	FBB	11X
NJ	BT]	\wedge	CPY	17E
NJ	DYL		DZX	ARJ
NJ	57W	\wedge	CKX	ESR
NJ	GHZ	^	CYL	91K
NJ	21 L		EWR	DAH
NJ	ECD		FMF	FVR
NJ	GAU		76B	744
NJ	EVR		EUVR	EAX
NJ	GEL	\wedge	GGW	CVZ
NJ	DVG	\wedge	GRT	857H
MD	51..	\wedge		CSC
NJ	9SR	^		DVX
NJ	..7S	\wedge		G0B
NJ	7WC	\wedge		69)

Ramp from 24E to 510W			510WB left turn onto Park SB	
			Lane 1	Lane 2
NJ	AFG			AJP
NJ	CWJ			EUP
NJ	DFA			EJG
NJ	GFE	\wedge		FMJ
MD	623	ヘ		955
PA	9258	\wedge		ANT
NJ	ERN			CUS
NJ	FAC	\wedge		FAV
NJ	DLH			DHT
NJ	786 U	\wedge		GCN
NJ	99A	ヘ		590
NJ	4600	,		8890
NJ	DAH			GPJ
NJ	ESK			G2N
NJ	41A			FVB
NJ	EYZ			DMC
NJ	PER			
NJ	AVE			
NJ	74 U			
NJ	FWY			
NJ	$52 Z$			
NJ	AWL			
NJ	06J			
NJ	EAX			
NJ	52]			
NJ	CLF			
NJ	CVZ			
NJ	857H			
NJ	DLS			
NJ	16R	^		
NJ	62H			
NJ	CSL			
NJ	1488			
NJ	DVX			
NJ	CED			
NJ	31A			
NJ	60B			
NY	2416	\wedge		
NJ	47L			
NJ	FJG	\wedge		
NJ	CYL			
NJ	FWR			
NJ	ERD	\wedge		
NJ	FJB			

		510WB left turn onto Park SB
Ramp from 24E to 510W		
Lane 1		

Ramp from 24E to 510W	
NJ	41N
NJ	73U
NJ	CZY
NJ	FEW
NJ	DLR
NJ	DTN
NJ	DZP
NJ	DHP
NJ	129B
NJ	DTM
NJ	1296
NJ	BJC
NJ	62 U
NJ	EEE
NJ	71 C
NJ	CLE
NJ	DDF
NJ	FXR
NJ	DM F
NJ	79G
NJ	DVR

510WB left turn onto Park SB
Lane 1
Lane 2

Total volume of ramp count: 275 cars
Total matched: 162 cars
Total \%: 59 \%
*Based on observation, and difficulty in tracking high-volume two-lane left turn movement, assumed percentage increased to 75%.

Excerpt from Langan traffic report for Honeywell site development

APPENDIX 7 TRAFFIC IMPACT STUDY

For

General Development Plan 101 Columbia Road Morris Township Morris County, New Jersey

Prepared For:
The Rockefeller Group 500 International Drive North Suite 345
Mount Olive, NJ 07828

Prepared By:
Langan Engineering and Environmental Services, Inc. 989 Lenox Drive

Suite 124
Lavvrenceville, NJ 08648
NJ Certificate of Authorization No: 24GA27996400

P.E. License \# 36434

Alan W. Lothian, P.E.
P.E. License \# 46658

2014-22-4-P-O
29 May 2014
130032902

TABLE OF CONTENTS

EXECUTIVE SUMMARY
INTRODUCTION 1
Project Description 1
Study Area 1
Scope of Study 3
DESCRIPTION OF EXISTING CONDITIONS 4
Roads 4
Columbia Road (C.R. 510) 4
Park Avenue (C.R. 623) 4
Normandy Parkway/Normandy Heights Road 4
Madison Avenue (NJ Route 124) 4
Kahn Road/ Old Glen Road 4
NJ Route 24 5
Intersections 5
Columbia Turnpike and Park Avenue 5
Columbia Road and East Honeywell Access Road/ Normandy Heights Road 5
Columbia Road and West Honeywell Access Road 5
Columbia Road and Normandy Parkway/ Normandy Heights Road 6
Madison Avenue and Normandy Parkway 6
Madison Avenue and Kahn Road/ Old Glen Road 6
Park Avenue and Site Access Road/ County By-Pass Ramps 6
Columbia Road and Lohman Road. 7
Kahn Road and Old Turnpike Road 7
Traffic Volumes 8
ESTIMATE OF FUTURE CONDITIONS 9
Background Traffic Growth 9
Other Planned Developments 9
No-Build Traffic Volumes. 10
Site-Generated Trips 10
Trip Distribution 12
Build Traffic Volumes 12
ANALYSIS OF TRAFFIC OPERATIONS 13
Level of Service Criteria 13
Capacity Analysis 14
Columbia Turnpike and Park Avenue 19
Columbia Turnpike and East Honeywell Access Road/Normandy Heights Road 19
Columbia Turnpike and West Honeywell Access Road 20
Columbia Turnpike and Normandy Parkway/ Normandy Heights Road 20
Madison Avenue and Normandy Parkway 21
Madison Avenue and Kahn Road/ Old Glen Road 21
Park Avenue and Site Access Road/ County By-Pass Ramps 22
Columbia Road and Lohman Road/ Proposed Residential East Street 22
Kahn Road and Old Turnpike Road 23
CONCLUSIONS 24

List of Figures

Figure 1 - Site Location Map
Figure 2-2014 Existing Peak Hour Traffic Volumes
Figure 3 - Other Development Traffic Without County By-Pass
Figure 4 - Other Development Traffic With County By-Pass
Figure 5-2023 Base with Other Development Traffic Without County By-Pass
Figure 6-2023 Base with Other Development Traffic With County By-Pass
Figure 7 - Honeywell Re-Populated Distributions
Figure 8 - Honeywell Re-Populated Traffic Volume
Figure 9-2023 No-Build Traffic Volumes Without County By-Pass
Figure 10-2023 No-Build Traffic Volumes With County By-Pass
Figure 11 - Office Distributions Without County By-Pass
Figure 12-Office Distributions With County By-Pass
Figure 13 - Office Traffic Volumes Without County By-Pass
Figure 14-Office Traffic Volumes With County By-Pass
Figure 15 -R\&D Traffic Volumes Without County By-Pass
Figure 16 - R\&D Traffic Volumes With County By-Pass
Figure 17-Residential Distributions Without County By-Pass
Figure 18-Residential Distributions With County By-Pass
Figure 19 - Residential Traffic Volumes Without County By-Pass
Figure 20 - Residential Traffic Volumes With County By-Pass
Figure 21 - Total Site Generated Traffic Without County By-Pass
Figure 22 - Total Site Generated Traffic With County By-Pass
Figure 23-2023 Build Traffic Volumes Without County By-Pass
Figure 24-2023 Build Traffic Volumes With County By-Pass

List of Tables

Table 1 - Trip Generation - Pre-Existing Development
Table 2 - Trip Generation - Proposed Development Program
Table 3 - Trip Generation Comparison - Proposed vs. Pre-Existing
Table 4 - Trip Distribution
Table 5 - Intersection Capacity Analysis Summary - Existing and No-Build Condition
Table 6 - Intersection Capacity Analysis Summary - 2023 Build Conditions

Appendices

Appendix A - Figures
Appendix B - Traffic Counts
Appendix C-Capacity Printouts
Appendix D-Timing Directives

EXECUTIVE SUMIMARY

The Rockefeller Group has retained Langan Engineering and Environmental Services to prepare a traffic impact study for the proposed development of 101 Columbia Road (aka Honeywell Campus), Morris Township, Morris County, New Jersey. The Honeywell campus is currently active and is developed with $1,156,182$ sf of office and research / lab space. The development Plan envisions development of the property to provide 715,000 sf of office/ lab space, 235 residential townhomes, and 185,000 sf of existing office/ lab space that will be retained by Honeywell where approximately 105 Honeywell employees will continue to be employed. The campus is located in the southwest quadrant of the intersection of Columbia Turnpike with Park Avenue. Access to the property is currently provided by two signalized driveways on Columbia Road, a controlled access drive along Park Avenue, and a driveway from Kahn Road which connects with Madison Avenue at a signalized intersection.

The existing 147 acre campus is currently zoned OL-40/PUD which allows for the development of office, lab space, and residential homes. The proposed development provides a mix of uses that reduces the overall existing office/lab space to 900,000 sf and provides for a residential development of 235 homes. We estimated the number of trips the proposed redevelopment would generate based on data compiled for Land Use Code 710 (General Office Building), Land Use Code 760 (Research and Development Center), and Land Use Code 230 (Residential Condominium/Townhouse) by the Institute of Transportation Engineers (ITE) as contained in the Trip Generation, $9^{\text {th }}$ edition. We estimated that the development will generate approximately 1088 trips (883 enter, 205 exit) during the weekday peak morning hour and 1065 trips (237 enter, 828 exit) during the weekday peak evening hour. It is noted that the existing zoning would permit development of the campus with up to $1,420,927$ sf of office/ lab space which would generate significantly more peak hour traffic than the development program as proposed.

The property is also well situated to take advantage of public transit opportunities. Convent Station, located on the NJ Transit Morristown Line, provides train access to NYC and is located within one mile of the campus. Opportunities exist to provide shuttle service to and from the station for residents and employees within the campus. Based upon data published by the Institute of Transportation Engineers, this available transit opportunity coupled with the mixed use design could reduce the peak hour traffic generation of the campus from between 5% to 15%. This potential transit opportunity has not been factored into the analyses as contained herein.

Access to the campus is proposed to be provided via the two existing traffic signalized roadways from Columbia Road, via an access road from Park Avenue, and via the existing access on Kahn Road connecting to Madison Avenue. A new access road is also proposed connecting to Columbia Road providing access to the residential east area in the northeast quadrant of the campus. The proposed access points are expected to operate acceptably during peak traffic hours.

The proposed access, circulation, and pedestrian connections as depicted on Circulation Plan in the General Development Plan submission are logically developed and will provide safe and efficient access and on-site pedestrian and vehicular circulation.

Overall, the proposed development program is estimated to generate similar traffic as compared to the re-occupancy of the current development on the site with approximately 23 less vehicles entering the site, and 19 more exiting trips leaving the site for a net decrease of 4 vehicles during the weekday morning peak hour and approximately 86 additional entering trips and 27 less exiting trips for a net increase of 59 vehicles during the weekday evening peak hour. While several intersections surrounding the project site experience poor levels of service during the peak hours, given the distribution of traffic resulting from the multiple points of access, no intersection will be significantly impacted by the traffic generated during the peak hours as compared to re-occupancy of the existing site to full utilization.

MORRIS COUNTY IMPROVEMENTS

The County has identified the need for realigning the ramps for NJ Route 24 eastbound to directly intersect Park Avenue at a proposed signalized intersection approximately 650 feet south of Columbia Turnpike. The new ramp connection would intersect Park Avenue opposite an existing Honeywell driveway. The County concept (Concept Plan B-1) includes two exclusive left-turn lanes westbound, two through lanes southbound, and a through and shared through-right turn lane northbound. These improvements will help divert traffic from the intersection of Park Avenue and Columbia Turnpike, and will alleviate the weave condition that exists on Columbia Turnpike westbound between the NJ Route 24 southbound off ramp and the left turn lanes on Columbia Turnpike westbound to Park Avenue Southbound. While these improvements are not currently programmed or funded, the proposed access improvements and campus circulation have been designed to be consistent with this future improvement to the interchange. In addition, since the construction timeline for these improvements is indeterminate, we have prepared the traffic analyses herein both with these improvements and without these improvements. The prosed redevelopment of the campus does not require, or rely on the completion of these regional improvements.

IMPROVEMENTS IDENTIFIED IN THE FINAL REGIONAL TRAFFIC STUDY (PREPARED BY THE LOUIS BERGER GROUP)

The Louis Berger Group prepared a "Final Regional Traffic Study" for Morris County dated January 2010 that identified short-term and long-term improvements for key intersections as a result of the future redevelopment of the Former Exxon Research Facility Site. The improvements identified in the study have been modeled in the analyses documented herein. The short-term and long-term improvements identified by the report are as follows:

Madison Avenue \& Old Glen Road/Kahn Road

Short-Term

- Modify signal timing to decrease overall intersection delay.

Long-Term

- Widen the northbound approach to provide an exclusive right-turn lane.
- Widen and restripe the eastbound and westbound approaches from two lanes to three lanes: provide a shared through/right-turn auxiliary lane. Restripe receiving lanes, followed by a right lane merge.
- Widen receiving lanes to two lanes, followed by a right lane merge.

Madison Avenue \& Normandy Parkway

Short-Term

- Modify signal timing to decrease overall intersection delay.
- Modify phasing for the EB left turn lane to protected plus permitted.

Long-Term

- Provide additional through lane in the westbound direction: restripe the westbound right turn only lane to a shared through/right-turn lane.
- Cut back traffic islands.
- Install "Stop" sign on the southbound free right-turn lane.

IMPROVEMENTS IDENTIFIED AS A RESULT OF HONEYWELL REDEVELOPMENT

Based upon the analyses as documented herein, improvements are proposed to the Honeywell site driveways as a result of the future redevelopment. The improvements identified for the site access roads are as follows:

Columbia Road \& East Honeywell Access Road

- Re-align the Access Road to align opposite Normandy Heights Road.
- Restripe the westbound approach to provide an exclusive left-turn lane.
- Restripe the eastbound approach and provide an exclusive left-turn lane to Normandy Heights Road.
- Install a new traffic signal.

Columbia Road \& West Honeywell Access Road

- Update the existing traffic signal.

Columbia Road \& Residential East Access Road

- Construct an access road from Columbia Road opposite Lohman Road
- Widen and Restripe Columbia Road to provide a separate left turn lane into the Residential East Access Road and into Lohman Road.
- Channelize the Residential East Access Road approach to Columbia Road to allow right turn movements only.

Park Avenue \& Honeywell Access Road/Route 24 EB On/Off Ramps

- Reconstruct the existing access road to provide channelized right-turn in/out movements only.
- Align the roadway to be compatible with the future Route 24 ramp project by Morris County.

INTRODUCTION

The Rockefeller Group has retained Langan Engineering and Environmental Services to prepare a traffic impact study for the proposed development of 101 Columbia Road (aka Honeywell Campus) located in Morris Township, New Jersey. The campus is located in the southwest quadrant of the intersection of Columbia Turnpike with Park Avenue and is designated as Block 9101, Lot 4, according to township tax maps. The site location is shown in Figure 1.

The campus is currently developed with $1,156,182$ sf of office and research / lab space which is partially occupied and actively utilized by Honeywell as its corporate headquarters. Access to the property is currently provided by two signalized driveways on Columbia Road, a controlled access drive along Park Avenue, and a driveway from Kahn Road which connects with Madison Avenue at a signalized intersection. The existing 147 acre campus is currently zoned OL40/PUD which allows the development of office, lab space, and residential homes.

Project Description

The Rockefeller Group proposes to develop the 147 acre campus to provide 715,000 sf of new office space, 235 residential townhomes, and the adaptive re-use of 185,000 sf of office/lab space that will be retained by Honeywell and will be occupied by approximately 105 Honeywell employees.

Access to the campus will be provided via the two existing signalized access roads that intersect Columbia Road supplemented by a new access road from Columbia Road proposed to provide access to the northeastern portion of the campus, via the existing Kahn Road Access road connecting out to Madison Avenue, and via an improved existing access road connecting to Park Avenue located opposite the proposed future County By-Pass ramps to and from NJ Route 24 southbound.

Study Area

The area surrounding the Honeywell Campus is very diverse in terms of land use with a mix of office, residential, institutional, and recreational land uses. The study area is served by an extensive transportation network including NJ Route 24 and I-287 which accommodates the majority of the regional traffic demands. The secondary road system consists of principal arterials such as Park Avenue, Columbia Road, Columbia Turnpike, and Madison Avenue that provide access to the regions land uses. Finally, the area is supported by mass transit including commuter rail with local stations and bus transit.

In preparing this report, we have reviewed and utilized data as documented in prior available studies as referenced below.

1) Morris Country traffic study prepared by The Louis Berger Group, Inc, dated January 2010.
2) 2027 Transportation Needs Assessment Study for Florham Park, prepared by GreenmanPedersen, Inc. dated December 23, 2007.
3) Traffic Impact Study for the Concept Development Plan: The Green at Florham Park prepared by Stantec dated March 2008.
4) Traffic Impact Study, Concept Development Plan, Honeywell, prepared by Langan Engineering and Environmental Services dated September 10, 2010, revised to November 16, 2011.

These various studies have provided analyses of many of the intersections and roadways surrounding the Honeywell campus.

Based upon a review of the existing traffic studies, an evaluation of the roadway network surrounding the campus, and consideration of the existing and proposed access locations to the campus, the following intersections were identified for analysis within this study:

- Columbia Turnpike and Park Avenue
- Columbia Road and East Honeywell Access Road/ Normandy Heights Road
- Columbia Road and West Honeywell Access Road
- Columbia Road and Normandy Parkway/ Normandy Heights Road
- Madison Avenue and Normandy Parkway
- Madison Avenue and Kahn Road/Old Glen Road
- Park Avenue and Honeywell Access Road/ County By-Pass Ramps
- Columbia Road and Residential East Access Road/ Lohman Road

Scope of Study

To assess the traffic impact associated with the proposed redevelopment plan, Langan has undertaken the following steps:

1. Conducted a field examination of the site and surrounding road network to inventory physical and regulatory conditions including the number of lanes, lane assignments, channelization, traffic-control devices, lateral clearances and other factors that limit traffic capacity.
2. Conducted a series of manual turning movement traffic counts at key study intersections. These manual turning movement traffic counts were undertaken on a typical weekday from 6:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. We then identified existing weekday morning and evening peak hour traffic volumes based on the manual traffic count data.
3. Established future "2023 Base" traffic volume by applying a general growth factor of 0.5 percent to the existing traffic volumes based upon the North Jersey Transportation Planning Authority (NJTPA) population and employment growth projection for the region.
4. Identified other planned developments and vacancies in the study area and established "2023 No-Build" traffic volumes.
5. Prepared trip generation estimates for the proposed development program based on accepted trip rates developed by the Institute of Transportation Engineers (ITE).
6. Developed a trip distribution based on existing travel patterns and demographic data.
7. Assigned site-generated trips to the site access roads and surrounding road network based on the likely travel routes motorists will use to travel to and from the site.
8. Established future "2023 Build" traffic volumes by adding site-generated trips to the "2023 No-Build" traffic volumes.
9. Performed intersection capacity analyses for the weekday morning and evening peak hours using methodologies as documented in the Highway Capacity Manual.
10. Reviewed the development plan to assess the adequacy of access, on-site circulation and parking.

DESCRIPTION OF EXISTING CONDITIONS

Roads

Columbia Road (C.R. 510)

Columbia Road (County Route 510, aka Columbia Turnpike east of Park Avenue) is a principal arterial road under the jurisdiction of Morris County. Along the project frontage, Columbia Road provides two travel lanes per direction with an auxiliary lane provided in the eastbound direction along the project frontage for right turns to and from the existing driveways. Columbia Road has a posted speed limit of 40 mph . Within the project area, land uses consist of the subject property and established residential neighborhoods.

Park Avenue (C.R. 623)

Park Avenue (County Route 623) is a principal arterial road under the jurisdiction of Morris County. Adjacent to the Honeywell Campus, Park Avenue provides two travel lanes per direction, with a turn lane provided at its intersection with Columbia Turnpike. Park Avenue has a posted speed limit of 45 mph . Land uses along Park Avenue within the project area are primarily commercial.

Normandy Parkway/Normandy Heights Road

Normandy Parkway/ Normandy Heights Road is a local roadway. This roadway provides one travel lane in each direction. This roadway is named Normandy Parkway south of Columbia Road and Normandy Heights Road north of Columbia Road. Normandy Heights Road is a U shaped roadway with both ends of the roadway intersecting with Columbia Road. Normandy Parkway has a posted speed limit of 40 mph . Land use along this road within the project area is primarily residential. The Morris Museum is located along Normandy Heights Road.

Madison Avenue (NJ Route 124)

Madison Avenue (NJ Route 124) is a principal arterial road under the jurisdiction of the New Jersey Department of Transportation (NJDOT). In the vicinity of the Honeywell Campus, Madison Avenue provides one travel lane per direction with turn lanes provided at intermittent intersections. Madison Avenue has a posted speed limit of 40 mph . Land uses along Madison Avenue within the project area are primarily commercial and institutional.

Kahn Road/ Old Glen Road

Kahn Road/Old Glen Road is a local roadway. This roadway provides one travel lane in each direction. This roadway is named Kahn Road northeast of the Madison Avenue intersection and

Old Glen Road southwest of the intersection. Land use along Kahn Road is commercial and there is a mix of commercial and residential land uses along Old Glen Road.

NJ Route 24

NJ Route 24 is a limited access highway under the jurisdiction of the New Jersey Department of Transportation (NJDOT). Route 24 runs between Interstate 287 in the northwest in a southeasterly direction connecting with Interstate 78. Route 24 provides two travel lanes per direction and has a posted speed limit of 55 mph . In the project area, a full interchange is provided between Route 24 and Columbia Turnpike.

Intersections

Columbia Turnpike and Park Avenue

The intersection of Columbia Turnpike and Park Avenue is a signalized, four-way intersection with a cycle length of 112 seconds. The eastbound approach along Columbia Turnpike consists of one exclusive left-turn lane, two through lanes and one exclusive channelized right-turn lane. The westbound approach along Columbia Turnpike consists of two exclusive left-turn lanes, two through lanes and one exclusive channelized right-turn lane. The northbound approach along Park Avenue consists of one exclusive left-turn lane, two through lanes and one exclusive channelized right-turn lane. The southbound approach along Park Avenue consists of two exclusive left-turn lanes, one exclusive through lane and one shared through and right-turn lane with a channelized right located at the intersection.

Columbia Road and East Honeywell Access Road/ Normandy Heights Road

The intersection of Columbia Road and East Honeywell Access Road/ Normandy Heights Road is a signalized, four-way intersection with a cycle length of 100 seconds. The eastbound approach along Columbia Road consists of one shared left-turn and through lane, one exclusive through lane and one shared through and right-turn lane. The westbound approach along Columbia Road consists of one shared left-turn and through lane and one shared through and right-turn lane. The northbound approach along East Honeywell Access Road consists of one exclusive left-turn lane and one shared through and right-turn lane. The southbound approach along Normandy Heights Road consists of one shared left-turn, through and right-turn lane.

Columbia Road and West Honeywell Access Road

The intersection of Columbia Road and West Honeywell Access Road is a signalized, "T"intersection with a cycle length of 100 seconds. The eastbound approach along Columbia Road consists of two through lanes and one shared through and right-turn lane. The westbound approach along Columbia Road consists of one shared left-turn and through lane and one
exclusive through lane. The northbound approach along West Honeywell Access Road consists of one shared left-turn and right-turn lane.

Columbia Road and Normandy Parkway/ Normandy Heights Road

The intersection of Columbia Road and Normandy Parkway/Normandy Heights Road is a signalized, four-way intersection with a cycle length of 100 seconds. The eastbound approach along Columbia Road consists of one shared left-turn and through lane and one shared through and right-turn lane with a channelized right located at the intersection. The westbound approach along Columbia Road consists of one shared left-turn and through lane and one shared through and right-turn lane with a channelized right located at the intersection. The northbound approach along Normandy Parkway consists of one shared left-turn and through lane and one exclusive right-turn lane. The southbound approach along Normandy Heights Road consists of one shared left-turn and through lane and one exclusive right-turn lane.

Madison Avenue and Normandy Parkway

The intersection of Madison Avenue and Normandy Parkway is a signalized, four-way intersection with a cycle length of 105 seconds. The eastbound approach along Madison Avenue consists of one exclusive left-turn lane and one shared through and right-turn lane. The westbound approach along Madison Avenue consists of one exclusive left-turn lane, one exclusive through lane and one exclusive channelized right-turn lane. The northbound approach along a Private Driveway consists of one shared left-turn, through and right-turn lane. The southbound approach along Normandy Parkway consists of one shared left-turn and through lane and one exclusive right-turn lane.

Madison Avenue and Kahn Road/ Old Glen Road

The intersection of Madison Avenue and Kahn Road/Old Glen Road is a signalized, four-way intersection with a cycle length of 90 seconds. The eastbound approach along Madison Avenue consists of one exclusive left-turn lane and one shared through and right-turn lane. The westbound approach along Madison Avenue consists of one exclusive left-turn lane and one shared through and right-turn lane. The northbound approach along Old Glen Road consists of one exclusive left-turn lane and one shared through and right-turn lane. The southbound approach along Kahn Road consists of one exclusive left-turn lane and one shared through and right-turn lane.

Park Avenue and Site Access Road/ County By-Pass Ramps

The future intersection of Park Avenue and Site Access Road/County By-Pass Ramps will be a signalized, four-way intersection with a cycle length of 100 seconds. The eastbound approach
along the Site Access Road will consist of one shared left-turn, through and right-turn lane. The westbound approach along the Country By-Pass Ramps will consist of two exclusive left-turn lanes and one through lane. The northbound approach along Park Avenue will consist of one shared left-turn and through lane, one exclusive through lane, and one exclusive channelized right-turn lane. The southbound approach along Park Avenue will consist of one exclusive through lane and one shared through and right-turn lane.

Columbia Road and Lohman Road

The intersection of Columbia Road and Lohman Road is a T-shaped unsignalized intersection. The eastbound approach along Columbia Road consists of a shared left-turn and through lane, and two through lanes, which tapers down to one to the east of the intersection. The westbound approach along Columbia Road consists of a shared through and right-turn lane, and one exclusive through lane. The southbound approach along Lohman Road consists of a shared left-turn, through and right-turn lane.

Kahn Road and Old Turnpike Road

The intersection of Kahn Road and Old Turnpike Road is a four-leg unsignalized intersection. The eastbound approach along Old Turnpike Road consists of a shared left-turn, through and right-turn lane. The westbound approach along Old Turnpike Road consists of a shared leftturn, through and right-turn lane. The northbound approach along Kahn Road consists of a shared left-turn, through and right-turn lane. The southbound approach along Kahn Road consists of a shared left-turn, through and right-turn lane.

Traffic Volumes

To establish existing traffic conditions on the adjacent road system surrounding the site, manual turning movement traffic counts were conducted during peak periods on a weekday morning and evening at the study intersections. Specifically, manual turning movement counts were conducted on Wednesday, March 5, 2014 from 6:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. Previous traffic count data for the study area intersections was collected on Tuesday, May 25, 2010 and Tuesday, October 4, 2011. This data was correlated with traffic count data documented in the other major regional traffic studies that have been conducted of this area. The data was balanced between intersections as appropriate to establish a representative traffic model of existing 2014 traffic conditions.

The manual traffic counts identify distinct times during the weekday morning and evening when traffic experienced its highest levels. According to the manual traffic count data collected, the weekday morning peak hour was 7:45 AM to 8:45 AM and the weekday evening peak hour was 5:00 PM to 6:00 PM.

Figure 2 illustrates the existing weekday morning and evening peak hour traffic volumes. Summaries of the manual traffic counts are contained in Appendix B.

ESTIMATE OF FUTURE CONDITIONS

This section of the report covers background traffic growth, other planned developments, sitegenerated trips, trip distribution, and future traffic volumes. We anticipate the proposed development could be completed by the year 2023. Accordingly, we projected traffic volumes to include existing traffic and new traffic created by background growth to derive the 2023 Base traffic volumes. We accounted for trips generated by other planned developments and area vacancies to derive the 2023 Base traffic volumes. We then added site-generated trips based on re-occupancy of the existing development to derive the 2023 No-Build traffic volumes. Further, we then added the proposed development site-generated trips to the 2023 Base traffic volumes to derive the 2023 Build traffic volumes. In preparing the future projections, two scenarios were considered, one without construction of the interchange bypass improvements by Morris County and one with the County improvements.

Background Traffic Growth

In order to project future 2023 base year traffic volumes, the 2014 existing traffic volumes were increased by a compounded annual growth rate of 0.5 percent. The background general growth pattern is consistent with the North Jersey Transportation Planning Authority (NJTPA) population growth projections for the region.

Other Planned Developments

In addition to general background growth, there are numerous approved developments that have been in development, exist with vacancies, or are to be developed that will influence traffic on the surrounding road network. In preparing the future traffic projections, we have included the traffic associated with these developments on the study area intersections. The following are the developments considered in the No-Build condition:

- Giralda Farms - Buildings One, Three and Four totaling 720,055 sf
- Hamilton Park - 68 room and 15,480 sf conference/meeting space expansion
- Triumph Square Phase I and Phase II-750,000 sf office space
- Park Place - approximately 63,000 sf vacant space in 200-300 Park Place
- Campus Drive - approximately 208,257 sf vacant space in 100-600 Campus Drive
- Green at Florham - 225 room hotel, 100,000 sf Sports Medicine Institute, 430,000 sf of office space, and 425 age restricted units.

Traffic associated with these developments was developed utilizing data published in the prior traffic studies previously noted. The collective traffic from these developments is shown on Figure 3 without the County By-Pass and Figure 4 with the County By-Pass. These volumes were used to develop the 2023 Base traffic volumes shown on Figures 5 and 6.

No-Build Traffic Volumes

The campus is currently active and is developed with $1,156,182$ sf office/ lab space. Honeywell currently occupies only a portion of the existing square footage. The No-Build condition includes the campus at full re-occupancy. For purposes of the analyses, although the campus is currently used as a corporate headquarters, to be conservative, we have projected the reoccupancy traffic generation based upon the existing campus use being considered a Research and Development Center, which generates less traffic as compared to office uses. Accordingly, Table 1 summarizes the peak hour traffic that is generated by the campus based upon full re-occupancy of the current development space on the site.

Table 1 - Trip Generation Pre-Existing Development Program

Time Period	In	Out	Total
Weekday Morning Peak Hour	906	186	1092
Weekday Evening Peak Hour	151	855	1006

The 2023 No-Build traffic volumes were derived by adding the re-populated trips, shown on Figure 8, to the 2023 Base traffic volumes. Figures 9 and 10 illustrate the 2023 No-Build weekday morning and evening peak hour volumes without and with the County improvements at Columbia Turnpike and Park Avenue, respectively.

Site-Generated Trips

The General Development Plan envisions development of the property to provide 715,000 sf of office/ lab space, 235 residential townhomes, and 185,000 sf of office/ lab space which will be retained by Honeywell and be occupied by approximately 105 Honeywell employees.

In order to project traffic associated with the existing, proposed, and potential build-out development scenario for the property, data as published by the Institute of Transportation Engineers in the publication Trip Generation, 9th Edition was utilized. Specifically, data contained within Land Use Codes 230 - Residential Condominium/Townhouse, Land Use Code 710 - Office, and Land Use Code 760 - Research and Development Center was utilized to estimate the peak hour traffic associated with the various development scenarios.

Table 2 provides a summary of the peak hour traffic generation associated with the proposed development program. The proposed development provides a mix of uses that reduces the overall existing office/R\&D space on site to 900,000 sf and provides for 235 residential homes. It is noted that for purposes of this traffic analyses, and to be conservative, all of the new
commercial building space (715,000 sf) is considered to be occupied as office space even though research/ lab space is a permitted use.. If some of this space were to be occupied for research and lab space uses, lower peak hour traffic generation would be experienced, since trip generation for research/ lab space in less than general office use.

Table 2 - Trip Generation Proposed Development Program

Land Use Code 715			
Time Period	In	Out	Total
Weekday Morning Peak Hour	812	111	923
Weekday Evening Peak Hour	149	730	879
Land Use Code 230-Residential Condominium/Townhouse 235 dwelling units			
Time Period	In	Out	Total
Weekday Morning Peak Hour	17	85	102
Weekday Evening Peak Hour	81	40	121
Land Use Code 760 - Research and Development Center $185 ; 000$ square feet (105 employees)			
Time Period	In	Out	Total
Weekday Morning Peak Hour	54	9	63
Weekday Evening Peak Hour	7	58	65
Total Trips for Entire Site			
Time Period	In	Out	Total
Weekday Morning Peak Hour	883	205	1088
Weekday Evening Peak Hour	237	828	1065

Table 3 provides a comparison of traffic generated by the proposed development program as compared to the pre-existing development. It is noted that the traffic projection for the proposed development program is conservative and does not take into account the inherent reduction in traffic associated with internal interaction of the various uses on site, or the opportunity that the mix of uses creates an opportunity for enhanced transit opportunities for the site. Further, as previously noted, traffic generation estimates for re-occupancy of the existing campus space was projected assuming that the entire campus was a research and development center, while the proposed new commercial space of 715,000 sf was projected assuming that it would be 100% occupied by office uses. The actual traffic generation from the site may be 5 to 15 percent less than as projected in Table 3 and as used in our analyses.

Table 3 - Trip Generation Comparison
Proposed vs. Pre-Existing

Time Period								Out	Total
Weekday Morning Peak Hour	-23	+19	-4						
Weekday Evening Peak Hour	+86	-27	+59						

Trip Distribution

We determined the directional distribution of site-generated trips based on existing travel patterns in the study area and demographic data. The directional distribution of site traffic is shown in Table 4 and on figures 7, 11,12,17 and 18.

Table 4 - Trip Distribution

Road Direction (To and From)	Distribution Percentage	
Madison Avenue (West)	OFFICE	BESIDENTIAL
Old Glen Road (South)	17%	11%
Columbia Turnpike (West)	6%	0%
Columbia Turnpike (East)	16%	39%
Park Avenue (North)	6%	5%
Park Avenue (South)	5%	6%
Normandy Heights Road (North)	9%	3%
NJ Route 24 (Northwest)	1%	0%
NJ Route 24 (Southeast)	21%	19%
Total	19%	17%

The arrival/departure distributions associated with each component of the development plan are shown on Figures 11, 12, 17, and 18. The distribution patterns were developed both for the existing roadway network and with the proposed Columbia Turnpike/ Park Avenue By-Pass Ramps. The resultant traffic volume distribution for each component and the aggregate of the development plan are shown on Figures 13, 14, 15, 16, 19, 20, 21, and 22.

Build Traffic Volumes

The 2023 Build traffic volumes were derived by adding the site-generated trips to the 2023 NoBuild traffic volumes. Figures 23 and 24 illustrate the 2023 Build weekday morning and evening peak hour traffic volumes without and with the County improvements at Columbia Turnpike and Park Avenue, respectively.

ANALYSIS OF TRAFFIC OPERATIONS

This section describes the capacity analysis we conducted to assess traffic operations for the Existing, No-Build and Build conditions. Capacity analysis provides an indication of the adequacy of road facilities to serve traffic demand.

Level of Service Criteria

Level of Service (LOS) is the term used to denote different operating conditions that occur on a given road segment under various traffic volume demands. LOS is a qualitative measure that considers a number of factors including road geometry, speed, travel delay and freedom to maneuver. LOS designations range from A to F and provide an index of operational qualities of a road segment or an intersection. LOS A represents the best operating conditions; LOS F represents the worst.

LOS designations are reported differently for signalized and unsignalized intersections. For signalized intersections, the analysis considers the operation of all traffic entering the intersection. For unsignalized intersections, the analysis considers the operation of all movements that conflict with other movements, such as main-line left turns and traffic exiting a side street. The evaluation criteria used to analyze the study area intersections are based on the 2010 Highway Capacity Manual (HCM), published by the Transportation Research Board and the latest version of the Highway Capacity Software (HCS).

The HCM defines LOS for signalized intersections as follows:

LOS	Control Delay per Vehicle
A	$<10 \mathrm{sec}$
B	≥ 10 and $\leq 20 \mathrm{sec}$
C	≥ 20 and $\leq 35 \mathrm{sec}$
D	≥ 35 and $\leq 55 \mathrm{sec}$
E	≥ 55 and $\leq 80 \mathrm{sec}$
F	$>80 \mathrm{sec}$

The HCM defines LOS for unsignalized intersections as follows:

$\frac{\text { LOS }}{\text { A }}$	Delay Range (sec/veh)
B	$\geq 10 \mathrm{sec}$
C	≥ 10 and $\leq 15 \mathrm{sec}$
D	≥ 25 and $\leq 25 \mathrm{sec}$
E	≥ 35 and $\leq 50 \mathrm{sec}$
F	$>50 \mathrm{sec}$

Capacity Analysis

Capacity analyses for the key intersections in the study area were conducted. Overall, the analyses show that the proposed development will not significantly impact operations in the study area during peak hours as compared to full re-occupancy of the existing facilities on the campus. Moreover, the proposed campus access points will operate acceptably during peak hours.

Tables 5 and 6 present a summary of the capacity analyses for the weekday morning and evening peak hours. Table 5 summarizes the results of our analyses for the existing condition, and the future 2023 No-Build traffic condition both without and with the county by-pass improvements at Columbia Turnpike and Park Avenue. Table 6 summarizes the projected 2023 Build Condition. The scenarios analyzed include 2023 Build for the existing roadway network; 2023 Build with the county by-pass ramps assumed as constructed; 2023 Build with signal timing optimization at each of the study locations; and finally, 2023 Build with the long term intersection improvements identified within the January 2010 Morris County regional traffic study.

Morris County is pursuing improvements to the Columbia Turnpike/ Route 24/ Park Avenue interchange which will provide a by-pass of the Columbia Turnpike and Park Avenue intersection for traffic traveling to and from Park Avenue arriving from the north on Route 24 and departing to the south on Route 24. The improvements being considered are shown on the attached Exhibit B-1. The flyover concept is the preferred scheme for several reasons including the desire to avoid an additional signal on Columbia Turnpike, and Utility conflicts. Scheme B-1 is estimated to cost $\$ 10,000,000$. No funding source has been identified or committed for construction. The interchange will fall under NJDOT jurisdiction, and will require NJDOT approvals. While the redevelopment plan does not rely on the construction of these improvements by others, the proposed access and circulation elements have been designed to be consistent with these improvements by others in the future.

In preparing our analyses, since funding for construction is not committed, we have evaluated two scenarios, one scenario based upon the existing roadway network, and the second scenario based upon the proposed implementation of the county preferred scheme.

Table 5 - Intersection Capacity Analysis Summary - Existing and No-Build

LOcATION	MOVEMENT		2014 EXISTING		2023 NO BUILD WITHOUTBYEPASS		2023 NO-BUILD WITH BYEPASSROAD	
			AM	PM ${ }^{\text {P }}$	AM	PM	AM	8M
SIGNALIZED INTERSECTIONS								
Columbia Turnpike \& Park Avenue	EB	L	E(55.3)	D(54.9)	E(56.4)	E(57.8)	E(56.4)	E(55.6)
		T	F(100.6)	D(51.8)	F(241.2)	F(143.3)	F(241.2)	F(118.2)
		R	C(30.5)	B(16.9)	C(35.2)	B(18.7)	C(35.2)	B(17.2)
	WB	L	E(71.2)	D(45.3)	F(363.0)	E(59.0)	F(80.4)	D(46.2)
		T	C(24.6)	C(29.7)	C(32.1)	D(41.1)	C(32.1)	D(48.5)
		R	A(8.3)	B(15.6)	A(8.7)	B(19.4)	A(8.7)	C(20.4)
	NB	L	E(56.5)	E(68.1)	E(56.8)	F(170.8)	E (56.8)	F (147.1)
		T	E(60.0)	F(138.3)	E(71.9)	F(247.4)	E(71.9)	F(208.9)
		R	B(18.9)	C(24.3)	C(21.3)	D(45.2)	B(19.3)	C(24.8)
	SB	L	D(52.1)	D(50.6)	E(56.1)	D(54.4)	E(56.1)	D(51.8)
		T,R	F(186.8)	D(52.6)	F(420.2)	E(71.6)	F(420.2)	E(63.7)
	OVERALL		E(78.2)	D(51.8)	F(200.3)	F(91.1)	F(145.7)	F(83.0)
Columbia Turnpike \& East Honeywell Access Road	EB	L, T, R	A(1.7)	A(2.9)	A(3.1)	B(11.0)		
	WB		A(3.3)	A(3.6)	C(23.1)	B(10.7)		
		T,R						
	NB	L	D(41.0)	D(51.6)	$\mathrm{D}(49.7)$	D(53.5)		
		T,R	A(0.2)	B(17.9)	A(0.7)	A(9.4)		
	SB	L, T, R	$\mathrm{D}(48.2)$	D(38.8)	A(1.6)	A(0.2)		
	OVERALL		A(3.2)	A(5.1)	B(12.5)	B(12.5)		
 West Honeywell Access Road	EB	T,R	A(0.7)	A(3.2)	A(2.8)	A(9.0)		
	WB	L, T	A(0.9)	A(4.7)	A(5.6)	C(21.3)		
	NB	L,R	D(35.9)	D(36.9)	C(31.7)	D(41.4)		
	OVERALL		A(0.9)	A(5.9)	A(4.7)	B(19.6)		
Columbia Turnpike \& Normandy Parkway/ Normandy Heights Road	EB	L, T, R	D(45.9)	D(35.7)	F(186.3)	D(37.5)		
	WB	L, T, R	D(35.3)	D(39.8)	D(38.2)	F(178.8)		
	NB	L, T	D(36.2)	D(41.6)	D(39.6)	D(43.2)		
		R	A(7.2)	A(8.9)	A(7.2)	A(9.0)		
	SB	L, T	D(51.8)	D(39.0)	E(62.6)	$\mathrm{D}(41.6)$		
		R	C(29.3)	C(30.2)	C(30.4)	C(30.7)		
	OVERALL.		$\mathrm{D}(38.6)$	C(34.9)	F(103.9)	F(113.8)		
Madison Avenue \& Normandy Parkway	EB	L	D(52.7)	F(170.2)	D(53.9)	F(217.3)		
		T,R	B(17.8)	A(9.3)	$\mathrm{F}(120.6)$	B(12.1)		
	WB	L	D(47.8)	N/A	D(47.8)	N/A		
		T	D(41.2)	F(88.1)	F(90.2)	F(370.7)		
		R	A(4.2)	A(3.0)	A(4.2)	A(5.2)		
	NB	L,T,R	A(0.0)	C(32.3)	A(0.0)	C(32.2)		
	SB	L, T	F(92.6)	E(72.4)	F(119.0)	E(75.5)		
		R	A(0.6)	A(0.5)	A(0.7)	A(0.7)		
	OVERALL		C(30.5)	E(59.5)	F(82.5)	F(175.3)		

Table 5 cont'd - Intersection Capacity Analysis Summary - Existing and No-Build

LOCATION	MOVEMENT		2014	STING	2023N WITHOU	-BUILD TBYPPASS	2023 WITH B	BUILD ASSROAD
			- AMM		(2) AM ${ }^{\text {a }}$	5 PM (${ }^{\text {a }}$	AM	PM
Madison Avenue \& Kahn Road/Old Glen Road	EB	L	A(6.2)	A(4.0)	$\mathrm{B}(15.8)$	$\mathrm{C}(27.9)$		
		T, R	$\mathrm{B}(15.3)$	A(6.8)	F(158.6)	B(13.2)		
	WB	L	A(7.3)	A(4.7)	$\mathrm{C}(22.3)$	A(9.9)		
		T,R	A(8.0)	A(8.2)	B(13.2)	E(75.1)		
	NB	L	C(34.7)	D(45.2)	C(30.4)	D(43.7)		
		T,R	C(32.1)	B(14.6)	E(50.5)	B(13.8)		
	SB	L.	C(33.0)	C(34.7)	C(33.2)	C(30.8)		
		T, R	B(14.7)	C(31.7)	B(13.3)	D(42.5)		
	OVERALL		B(15.3)	B(10.5)	F(93.8)	D(47.8)		
 Site Access Road/Route 24 East On/Off Ramps	WB	L					D(42.1)	C(34.1)
	NB	L, T					A(7.5)	$B(10.0)$
		R					A(0.1)	$\mathrm{A}(0.6)$
	SB	T,R					D(48.3)	A(5.6)
	OVERALL						D(36.4)	A(9.1)
		UNS	GNALIZE	RSECTIO			4	2ix
Columbia Road \& Lohman Road	EB	L	A(9.9)	$\mathrm{B}(11.2)$	$\mathrm{B}(12.3)$	$\mathrm{B}(13.6)$		
		T	$\mathrm{A}(0.0)$	A(0.0)	A(0.1)	A(0.1)		
	SB	L,R	B(13.2)	C(17.8)	C(18.9)	D(26.3)		
Kahn Road \& Old Turnpike Road	EB	L,T,R	A(7.3)	A(7.4)	A(7.7)	A(7.9)		
	WB	L,T,R	A(7.4)	A(8.8)	A(7.9)	A(9.9)		
	NB	L,T,R	A(7.4)	A(7.2)	A(8.6)	A(8.0)		
	SB	L,T,R	A(7.1)	A(7.9)	A(7.5)	A(9.4)		

Table 6 - Intersection Capacity Analysis Summary - Build

Location	MOVEMENT:		2023 BUILD WITHOUT BYPASS ROAD		2023 BUILD WITHBYPASS ROAD AND FULL ACCESS ROAD		2023 BUILD WITH OPTIMIZED TIMING Modifications		2023 BUILD WITH IMPR. IDENTIFIED IN REGIONALREPORT	
			AM	PM	AM	PM	AM	TPM	AME	PM
2			9	SIGNALIZ	INTER	ONS			580	
Columbia Park Avenue	EB	L	E(56.5)	E(57.8)	E(56.4)	E(55.7)	E(63.5)	F(80.0)		
		T	F(247.9)	F(140.2)	F(229.9)	E(75.5)	F(170.4)	E(69.2)		
		R	C(34.7)	B(17.9)	C(34.7)	B(16.7)	D(46.1)	B(13.1)		
	WB	L	F(364.4)	E (62.0)	F(81.0)	D(46.4)	F(147.3)	E(69.9)		
		T	C(31.9)	D(42.2)	C (28.2)	D(45.8)	C(28.2)	D(49.8)		
		R	A(8.7)	B(19.4)	A(8.7)	C(20.3)	A(9.9)	C(26.9)		
	NB	L	E(57.5)	F(169.4)	E (57.5)	F(147.5)	F(246.5)	E(70.2)		
		T	E(71.9)	F(247.4)	E (71.9)	F(208.4)	D(49.8)	E(55.1)		
		R	C(21.3)	D(45.2)	B(19.3)	C(24.7)	B(19.1)	C(21.7)		
	SB	L.	E(56.1)	D(54.4)	E (56.1)	D(52.0)	E(78.2)	F(95.9)		
		T,R	F(410.5)	E (73.8)	F(409.7)	E(64.7)	F(134.6)	E(67.8)		
	OVERALL		F(200.9)	F(91.4)	F (145.2)	E(75.4)	F(102.9)	E(54.7)		
Columbia East Honeywell Access Road	EB	L,T,R	B(12.8)	B(16.6)	A(9.9)	B(14.5)	B(10.7)	A(7.9)		
	WB	L	C(28.8)	A(6.0)	$\mathrm{B}(13.5)$	A(5.1)	B(8.1)	A(4.8)		
		T,R	A(3.4)	A(7.5)	A(3.2)	A(7.3)	A(3.2)	A(7.3)		
	NB	L	$\mathrm{D}(51.8)$	D(53.4)	D(51.8)	D(54.2)	D(51.8)	D(54.2)		
		T,R	A(0.5)	A(5.0)	A(0.3)	A(1.3)	A(0.3)	A(2.6)		
	SB	L, T, R	A(1.3)	A(0.2)	A(1.3)	A(0.2)	A(1.3)	A(0.2)		
	OVERALL		$\mathrm{B}(10.6)$	$\mathrm{B}(12.8)$	A(8.1)	$\mathrm{B}(11.9)$	A(8.3)	A(9.4)		
Columbia Turnpike \& West Honeywell Access Road	EB	T,R	A(2.6)	A(8.3)	A(2.2)	A(7.3)	A(2.2)	A(6.9)		
	WB	L, T	B(11.3)	C(23.9)	A(6.8)	B(19.3)	A(7.3)	B(13.3)		
	NB	L,R	C(32.4)	D(42.1)	D(34.7)	D(43.7)	D(34.7)	D(48.1)		
	OVERALL		A(6.6)	C(20.5)	A(4.5)	B(17.4)	A(4.7)	B(14.4)		
Columbia Normandy Parkway/ Normandy Heights Road	EB	L,T,R	F(190.3)	D(38.6)			E(61.7)	E(57.2)		
	WB	L,T,R	D(38.5)	F(181.5)			E(76.8)	E(70.8)		
	NB	L, T	D(44.4)	D(44.0)			E(59.5)	E (68.9)		
		R	A(7.1)	A(8.9)			A(7.7)	B(11.2)		
	SB	L, T	E(65.6)	D(41.5)			F(93.5)	E(79.2)		
		R	C(30.3)	C(30.7)			C(32.1)	D(36.8)		
	OVERALL		F(106.0)	F(114.2)			E(64.1)	E(61.0)		
Madison Avenue \& Normandy Parkway	EB	L	D(53.8)	F(232.4)			E(78.5)	F(360.2)	C(22.3)	F(128.9)
		T,R	F(119.2)	B(12.3)			F(82.5)	A(7.3)	F(119.2)	B (12.3)
	WB	L	D(47.8)	N/A			D(47.8)	N/A	D(47.8)	N/A
		T	F(88.0)	F(367.7)			D(39.6)	F(223.4)	C(24.8)	E(72.5)
		R	A(4.2)	A(5.1)			A(2.8)	A(2.0)		
	NB	L,T,R	A(0.0)	C(32.2)			A(0.0)	D(48.2)	A(0.0)	C(32.2)
	SB	L, T	F(121.9)	F(80.9)			F(237.5)	F(280.3)	F(121.9)	F(80.9)
		R	A(0.7)	A(0.7)			A(0.7)	A(0.7)	$\mathrm{A}(0.7)$	A(0.7)
	OVERALL		F(81.6)	F(175.7)			E(69.3)	F(146.8)	E(66.4)	D(55.0)

Table 6 cont'd - Intersection Capacity Analysis Summary - Build

LOCATION	MOVEMENT		2023 WITHOU RO	UILD BYPASS D	$\begin{aligned} & 2023 \\ & \text { WIH By } \\ & \text { AND FU } \end{aligned}$	UILD ISS ROAD ACCESS AD	2023 B OPTIMIZ MODIF	LDWITH DTIMING CATIONS	$\begin{aligned} & 2023 \mathrm{BUI} \\ & \text { MPR. ID } \\ & \text { INREG } \\ & \text { RER } \end{aligned}$	D WITH NTIFIED ONAL RT
			AM	PM	AM	PM	AM.	PM	AM	PM
Madison Avenue \& Kahn Road/Old Glen Road	EB	L	B(15.2)	D(46.2)			A(7.3)	D(41.6)	A(6.8)	A(7.2)
		T,R	F(157.9)	B(13.1)			F(95.9)	A(9.7)	B(13.4)	B(12.2)
	WB	L	C(22.2)	B(9.8)			$\mathrm{B}(17.9)$	A(6.5)	A(6.2)	A(6.3)
		T,R	B(13.1)	E (75.2)			A(7.6)	D(53.0)	B(11.5)	B(14.8)
	NB	L	C(30.5)	D(43.2)			D(41.7)	D(54.7)	C(33.7)	D(46.0)
		T, R	D(50.1)	B(13.8)			F(137.8)	B(16.7)	D(40.8)	B(13.5)
	SB	L	C(31.9)	C(30.7)			D(40.4)	D(36.1)	D(35.1)	C(30.4)
		T,R	B(12.1)	D(42.1)			B(16.4)	E(56.3)	B(13.2)	D(35.5)
	OVERALL.		F(93.4)	D(48.0)			E(68.7)	D(37.3)	B(15.9)	B(16.2)
Park Avenue \& Site Access Road/ Route 24 East On/Off Ramps	EB	L,T,R			D(49.6)	E(64.9)	D(49.9)	E(64.9)		
	WB	L			D(51.4)	E(56.0)	D(51.4)	E(56.0)		
		T			D(39.7)	D(45.3)	D(39.7)	D(45.3)		
	NB	L, T			$\mathrm{B}(10.2)$	C(20.9)	B(10.2)	C(20.9)		
		R			A(0.1)	A(0.6)	A(0.1)	A(0.6)		
	SB	T,R			E (76.3)	B(10.8)	E (76.3)	B(10.8)		
	OVERALL				D(54.0)	C(20.0)	D(54.0)	C(20.0)		
	EB L $\mathrm{B}(12.2)$ $\mathrm{B}(13.7)$ $\mathrm{B}(11.1)$ $\mathrm{B}(13.4)$						-			
Columbia Road \& Lohman Road/ Proposed Site Access Road									\square	
	WB	L	B(13.8)	B(11.9)	B(13.6)	B(11.2)				
	NB	R	C(16.8)	B(14.0)	C(16.3)	B(13.2)				
	SB	L,T,R	D (28.0)	E(48.9)	C(22.2)	C(21.4)				
Park Avenue \& Site Access Road	EB	R	$\mathrm{E}(41.2)$	C(15.0)						
Kahn Road \& Old Turnpike Road	EB	L,T,R	A(7.7)	A(8.0)	A(7.6)	A(8.0)				
	WB	L,T,R	A(7.9)	B(10.0)	A(7.9)	A(9.9)				
	NB	L,T,R	A(8.7)	A(8.2)	A(8.6)	A(8.2)				
	SB	L,T,R	A(7.5)	A(9.3)	A(7.5)	A(9.3)				

Columbia Turnpike and Park Avenue

Without By-Pass

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS F during both the weekday morning and evening peak hours. Under the Build condition, the intersection is expected to continue to operate at an overall LOS F, but with a lower delay than the No-Build condition during both the weekday morning and evening peak hours.

With By-Pass

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS F during both the weekday morning and evening peak hours. With the construction of the county by-pass the westbound left and northbound right movements are expected to operate at improved levels of service from the No-Build condition without the proposed improvement. Under the Build condition, the intersection is expected to continue to operate at an overall LOS F, but with a lower delay than the No-Build condition during the weekday morning peak hour. During the weekday evening peak hour the intersection is expected to operate at an overall LOS E, under the Build condition.

The by-pass ramps significantly improve the operation of the intersection, and provide an opportunity to optimize the traffic signal operation. With optimization, the intersection is expected to operate at an overall LOS F and LOS E during the weekday morning and evening peak hours, respectively, with a significant decrease in the overall delay.

Columbia Turnpike and East Honeywell Access Road/Normandy Heights Road

It is proposed to improve the lane geometry at the intersection by minor widening and restriping along the campus frontage to provide a separate left turn on the westbound and eastbound approaches, and re-alignment of the east access road to align with Normandy Heights Road. The provision for the left turn lanes will improve the intersection safety by separating left turning traffic from the through movement lanes, and will increase the capacity of the eastbound/westbound through movements.

Without By-Pass

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS B during both the weekday morning and evening peak hours. Under the Build condition, the intersection is expected to operate at an overall LOS B during both the weekday morning and evening peak hours.

With By-Pass

Under the No-Build condition, the intersection is expected to operate at an overall LOS B during both the weekday morning and evening peak hours. Under the Build condition, the intersection is expected to operate at an overall LOS A and LOS B during the weekday morning and evening peak hour, respectively.

The by-pass ramps and proposed improvements effect the overall operation of the intersection, and provide an opportunity to optimize the traffic signal operation. With optimization, the intersection is expected to operate at an overall LOS A during both the weekday morning and evening peak hours.

Columbia Turnpike and West Honeywell Access Road

Without By-Pass

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS A and LOS B during the weekday morning and evening peak hours, respectively. Under the Build condition, the intersection is expected to continue to operate at an overall LOS A and LOS C during the weekday morning and evening peak hours, respectively.

With By-Pass

Under the No-Build condition, the intersection is expected to operate at an overall LOS A and LOS B during the weekday morning and evening peak hours, respectively. Under the Build condition, the intersection is expected to continue to operate at an overall LOS A and LOS B during the weekday morning and evening peak hours, respectively.

The by-pass ramps effect the overall operation of the intersection, and provide an opportunity to optimize the traffic signal operation. With optimization, the intersection is expected to continue to operate at the same levels of service during both peak hours.

Columbia Turnpike and Normandy Parkway/ Normandy Heights Road

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS F during both the weekday morning and evening peak hours. Under the Build condition, the intersection is expected to continue to operate at an overall LOS F during both the weekday morning and evening peak hours, but will operate with a lower overall delay.

Improvements to the intersection could be done through optimization of the traffic signal operation. With optimization, the intersection is expected to improve and operate at an overall LOS E during both the weekday morning and evening peak hours.

Madison Avenue and Normandy Parkway

Under the No-Build condition, with re-occupancy of the existing campus the intersection is expected to operate at an overall LOS F during both the weekday morning and evening peak hours. Under the Build condition, the intersection is expected to continue to operate at an overall LOS F during both the weekday morning and evening peak hours, but will operate with a lower overall delay.

Improvements to the intersection could be done through optimization of the traffic signal operation. With optimization, the intersection is expected to improve to operate at an overall LOS E during the weekday morning peak hour. During the weekday evening peak hour the intersection is expected to continue to operate at an overall LOS F, but with a significant decrease in the overall delay.

Consistent with the findings of the January 2010 county study, this intersection will experience increased delays in the future. The long term improvements identified in the county study will alleviate the projected future intersection operation. Under the improvement from the study, the intersection is expected to operate at an overall LOS E and LOS D during the weekday morning and evening peak hours, respectively.

Madison Avenue and Kahn Road/ Old Glen Road

Under the No-Build condition, the intersection is expected to operate at an overall LOS F and LOS D during the weekday morning and evening peak hours, respectively. Under the Build condition, the intersection is expected to continue to operate at an overall LOS F and LOS D during the weekday morning and evening peak hours, respectively, but with a lower overall delay than the No-Build condition.

Improvements to the intersection could be done through optimization of the traffic signal operation. With optimization, the intersection is expected to improve to operate at an overall LOS E and LOS D during the weekday morning and evening peak hours, respectively.

Consistent with the findings of the January 2010 county study, this intersection will experience increased delays in the future. The long term improvements identified in the county study will alleviate the projected future intersection operation and improve the overall operation of the intersection to LOS B during both the peak hours.

Park Avenue and Site Access Road/ County By-Pass Ramps

The county is pursuing improvements to the Columbia Turnpike/ Route 24/ Park Avenue interchange. These improvements will result in the construction of a new signalized intersection opposite the Honeywell Park Avenue access road. Associated with the development of the campus, and construction of this new signal, it is proposed to provide a full access connection at this location opposite the new ramp termini. The access road at this location will reduce the amount of new traffic that will travel through the Columbia Turnpike/Park Avenue intersection during both the weekday morning and evening peak hours.

Associated with the construction of the new ramp terminal, it is recommended that the following improvements be implemented:

- Open the driveway to provide full access onto Park Avenue.
- Design the westbound ramp approach to provide a through lane in addition to the proposed two exclusive left turn lanes.
- Design the northbound approach to provide an exclusive right-turn lane to the ramp.
- Design the signal operation to provide split phases for the eastbound and westbound approaches.
- Construct the eastbound exit approach from the Honeywell Campus to provide one lane.

Without By-Pass

Under the Build condition, the unsignalized right turn in/out intersection is expected to operate at LOS E or better during the weekday morning peak hour and LOS C or better during the weekday evening peak hour.

With By-Pass

Under the No-Build condition, the signalized intersection is expected to operate at an overall LOS D during the weekday morning peak hour and LOS A during the weekday evening peak hour. Under the Build condition, the intersection is expected to operate at an overall LOS D and LOS C during the weekday morning and evening peak hours, respectively.

Columbia Road and Lohman Road/ Proposed Residential East Street

Access to the residential east district of the project is to be provided via a street that is proposed to intersect Columbia Road directly across from Lohman Road. It is proposed to widen and restripe Columbia Road to provide an exclusive left turn lane on both the westbound and eastbound direction, and continue to provide two through lanes in each direction on the Columbia Road approaches as well. The new street will be designed to restrict left turns out
and provide a channelized right turn lane. No changes are proposed for the southbound Lohman Road approach.

Without By-Pass

Under the No-Build condition, all movements at the unsignalized intersection are expected to operate at LOS C or better during the weekday morning peak hour and LOS D or better during the weekday evening peak hour. Under the Build condition, all movements are expected to operate at LOS D or better in both the weekday morning and evening peak hours, with the exception of the southbound movement which is expected to operate at an LOS E during the weekday evening peak hour.

With By-Pass

Under the No-Build condition, all movements at the unsignalized intersection are expected to operate at LOS C or better during the weekday morning peak hour and LOS D or better during the weekday evening peak hour. Under the Build condition, all movements are expected to operate at LOS C or better during both the weekday morning and evening peak hour.

Kahn Road and Old Turnpike Road

Without By-Pass

Under the No-Build condition, all movements at the unsignalized intersection are expected to operate at LOS A during both the weekday morning peak hour and evening peak hours. Under the Build condition, all movements are expected to operate at LOS A during the weekday morning peak hour and LOS B or better during the weekday evening peak hour.

With By-Pass

Under the No-Build condition, all movements at the unsignalized intersection are expected to operate at LOS A during both the weekday morning peak hour and evening peak hours. Under the Build condition, all movements are expected to operate at LOS A during both the weekday morning evening peak hours.

CONCLUSIONS

Based upon the analyses as contained herein, it is determined that the proposed development will provide a mix of uses that reduces the overall office/lab space to 900,000 sf from the preexisting $1,156,182$ sf and provides for a residential development of 235 townhomes which will generate a level of traffic that is similar to the level of traffic generated by the existing campus upon full re-occupancy during both the weekday morning and evening peak hours. For purposes of this traffic impact study, when evaluating the pre-existing traffic impacts from the existing campus, the existing space was assumed to be fully utilized as a research and development center which generates lower traffic volumes than office and corporate office uses. It is noted that the existing campus is currently utilized by Honeywell as its Global Corporate Headquarters and for research and development activities. Further, the traffic projections for the new commercial space of 715,000 sf was assumed to be fully occupied by office users even though it is possible that some of the space may be occupied by research/ lab users which has a lower traffic generation as compared to office space use. Based upon our analyses, we have determined that the proposed development program traffic generation, even with the conservative traffic generation estimates described above, will be essentially the same as the traffic generation from the site if the existing campus space was re-occupied.

Based upon the traffic analyses as documented herein, it is concluded that the project will not significantly impact operations in the study area during peak hours as compared to the prior occupancy traffic generation from the campus. Moreover, the proposed site access roads will be improved and will operate acceptably during the peak hours.

The proposed site access roadways and internal circulation system as depicted on the General Development Circulation Plan will provide for safe and efficient access and on-site circulation.

[^1]
ApPEndix A
 Figures

Traffic signal plans and timing

Revised June 15, 1999
NOTES:

1. THE CONTROLLER IS ON A 48-112 SECOND VARIABLE CYCLE.
2. VEHICLE INTERVAL IS TO BE 2 SECONDS.
3. MANUAL CONTROL IS TO BE OMITTED FROM THE CONTROLLER CABINET.
4. THE MEMORY CIRCUIT FOR THE LOOP DETECTORS IS TO BE DISCONNECTED
5. PEDESTRIAN ACTUATION IS TO PROVIDE A MINIMUM GREEN OF 18 SECONDS FOR PHASES $2 / 6$ AND 4/8
6. CONTROLLER SHALL REST IN PHASE $2 / 6$.
7. THE CONTROLLER SHALL HAVE THE CAPABILITY OF SKIPPING PHASE $1 / 5$ OR $3 / 7$ OR BOTH; SHALL PERMIT EITHER LEFT TURN MOVEMENT TO OCCUR OR TERMINATE WITHOUT THE OTHER AND ALLOW NON-CONFLICTING MOVEMENTS ON PARK AVENUE AND COLUMBIA TURNPIKE TO OCCUR; SHALL HAVE A DUAL MAXIMUM SETTING FOR EACH ACTUATED PHASE.
8. SCHEDULE I TIMING IS TO OCCUR FROM 5 AM TO 11 AM AND SCHEDULE II TIMING IS TO OCCUR AT ALL OTHER TIMES.
9. DURING SCHEDULE I, THE MAXIMUM LENGTH OF GREEN ARROW FOR SIGNALS 22 AND 24 IS TO BE 11 SECONDS.
10. DURING SCHEDULE II, THE MAXIMUM LENGTH OF GREEN ARROW FOR SIGNALS 21 AND 23 IS TO BE 12 SECONDS.
11. ALL SIGNALS WITH RIGHT TURN ARROWS (\#5-8, 17-20,30) ARE TO HAVE THEIR GREEN ARROWS TERMINATED CONCURRENTLY WITH THEIR CORRESPONDING OVERLAPPING LEFT TURN SIGNALS. A CONFLICT MONITOR IS TO BE MAINTAINED TO ENSURE THIS.

State nt Axem Jerxey

DEPARTMENT OF TRANSPORTATION
P.O.Box 600

Trenton, New Jersey 08625-0600

James Weinstein
Commissioner
AUTHORIZATION TO REVISE-Traffic Signal Columbia Tpk \& Park Ave Hanover \& Morris Twps. Morris County

March 5, 1999
Stephen W. Hammond, P.E.
Supervising Engineer
Admn. \& Records Bldg. - PO Box 900
Morristown, NJ 07963-0900
Dear Mr. Hammond:
This is in reference to your letter dated February 10, 1999, wherein you forwarded revised plans for the existing traffic control signal currently proposed for reconstruction at the above captioned intersection.

Submitted with the letter was your certification that the revisions are in accordance with the Manual on Uniform Traffic Control Devices. Therefore, authorization is hereby issued to proceed with the installation of the revised traffic signal layout and operation at the subject intersection in accordance with the enclosed Plan LTS-4695 bearing the latest revision date of February 18, 1999 and timing schedule most recently revised on November 23, 1998.

When you have completed the revisions to the traffic signal installation, you should then submit a certification with a Professional Engineer's Seal that the installation has been completed in accordance with the authorized design and has been inspected to ensure such conformance. At that point, the Commissioner's approval will be granted.

Sincerely,

William E. Anderson
Manager, Bureau of Traffic Engineering and Safety Programs

Enclosures

Appendix " H "

Aerial Plan and Photographs

PROJECT LOCATION

Photo 1 - View of Columbia Turnpike/Park Avenue Interchange from West Approach.

Photo 2 - View of Columbia Turnpike/Park Avenue Interchange from East Approach.

Improvements at Route 24 and Columbia Turnpike Interchange

Photo 3 - View of Columbia Turnpike and Park Avenue Interchange from MetLife parking lot (NE Quadrant).

Photo 4 - View of Columbia Turnpike WB from the intersection at Park Avenue.

Photo 5 - Vehicles cutting across lanes of traffic from Route 24 EB Ramp to Columbia Turnpike.

Photo 6 - Vehicles queued up to make the left onto Park Avenue SB.

Photo 7 - Vehicles queued up on Columbia Turnpike WB, the majority of which are turning left onto Park Avenue SB.

Photo 8 - Vehicles queued up on Columbia Turnpike EB bound for Route 24 and beyond.

Photo 9 - Driveway for Hyatt House from Park Avenue to be revoked.

Photo 10 - Vehicle queues on Park Avenue NB.

Appendix "I"

Straight Line Diagrams

SRI =14000623__ Date last inventoried: May 2011

Street Name
Jurisdiction
Functional Class
Federal Aid - NHS Sy
Control Section
Speed Limit
Number of Lanes
Med. Type
Med. Width
Pavement
Shoulder
Traffic Volume
Traffic Sta. ID
Structure No.
Enlarged Views

SRI = 14000623__ Date last inventoried: May 2011

Appendix " J "

Traffic Volumes

(TRAFFIC VOLUMES FOR ALTERNATIVE 3 AND ALTERNATIVE 3 - REVISED ARE SAME)

Existing and No-Build volume worksheets

and Synchro reports

$=$
\#

Lanes，Volumes，Timings
3：Park Avenue \＆Columbia Turnpike
12／23／2019

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	拲	7	\％${ }^{\text {\％}}$		${ }^{*}$	年	种	F\％	年年	性	
Traffic Volume（vph）	14	817	281	1524	559	142	119	321	539	353	777	59
Future Volume（vph）	14	817	281	1524	559	142	119	321	539	353	777	59
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	220		220	0		350	160		175	240		0
Storage Lanes	1		1	2		1	1		2	2		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	0.95	0.88	0.97	0.95	0.95
Frt			0.850			0.850			0.850		0.985	
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3574	1615	3433	3471	1524	1687	3505	2760	3467	3475	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1770	3574	1615	3433	3471	1524	1687	3505	2760	3467	3475	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			135			178			87		10	
Link Speed（mph）		40			50			35			35	
Link Distance（ft）		841			361			556			1071	
Travel Time（s）		14.3			4.9			10.8			20.9	
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Heavy Vehicles（\％）	2\％	1\％	0\％	2\％	4\％	6\％	7\％	3\％	3\％	1\％	1\％	14\％
Adj．Flow（vph）	18	869	327	1712	650	178	140	391	613	401	893	102
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	18	869	327	1712	650	178	140	391	613	401	995	0
Enter Blocked Intersection	Yes											
Lane Alignment	Left	Left	Right									
Median Width（ft）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector（ft）	20	100	20	20	100	20	20	100	20	20	100	
Trailing Detector（ft）	0	0	0	0	0	0	0	0	0	0	0	
Detector 1 Position（ft）	0	0	0	0	0	0	0	0	0	0	0	
Detector 1 Size（ft）	20	6	20	20	6	20	20	6	20	20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$							
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	

Detector 2 Type	Cl＋Ex			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel											
Detector 2 Extend（s）		0.0			0.0			0.0			0.0
Turn Type	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA
Protected Phases	7	4	5	3	8	1	5	2	3	1	6

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:
Operational Analysis \qquad

Analyst: SMC
Agency/Co.:
IH
Date Performed:
Dec 2019
Analysis Time Period:
AM Peak
Freeway/Dir of Travel:
NJ 24 EB at CR 510
Weaving Location:
EB
Analysis Year:
2019
Description:
NJ 24/CR 510 CD

Inputs \qquad

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL

Terrain type

Grade
Length

Level

Freeway
One-Sided
3
600
65
15 2350
ln
ft
mi/h
mi / h
$\mathrm{pc} / \mathrm{h} / \ln$
0.00
0.00
\%
mi

Conversion to pc / h Under Base Conditions \qquad Volume Components

| Volume, V | 3376 | 149 | 612 | 0 | veh/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Peak hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | |
| Peak 15-min volume, v15 | 938 | 41 | 170 | 0 | |
| Trucks and buses | 5 | 5 | 5 | 0 | \% |
| Recreational vehicles | 0 | 0 | 0 | 0 | $\%$ |
| Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | |
| Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | |
| Heavy vehicle adjustment, fHV | 0.976 | 0.976 | 0.976 | 1.000 | |
| Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | |
| Flow rate, v | 3845 | 170 | 697 | 0 | pc / h |

Volume ratio, VR
0.184

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	$\mathrm{lc} / \mathrm{pc}$

Minimum FR lane changes, LCFR	1	$\mathrm{lc/pc}$
Minimum RR lane changes, LCRR		$\mathrm{lc} / \mathrm{pc}$
		867
Minimum weaving lane changes, LCMIN	973	lc / h
Weaving lane changes, LCW	231	
Non-weaving vehicle index, INW	539	lc / h
Non-weaving lane change, LCNW	1512	lc / h

Weaving and Non-Weaving Speeds

Weaving intensity factor, w	0.469	
Average weaving speed, SW	49.0	mi / h
Average non-weaving speed, SNW	51.2	mi / h

\qquad Weaving Segment Speed, Density, Level of Service and Capacity

```
Weaving segment speed, S 50.8 mi/h
Weaving segment density, D 30.9 pc/mi/ln
Level of service, LOS
Weaving segment v/c ratio 0.762
Weaving segment flow rate, v veh/h
Weaving segment capacity, cW veh/h
```

Limitations on Weaving Segments
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	4373	600	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	2061	c	
v/c ratio	Maximum	Analyzed		
	1.00	0.762	d	

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
E
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24 MORRIS COUNTY, NEW JERSEY
\#

Lanes，Volumes，Timings
3：Park Avenue \＆Columbia Turnpike
12／23／2019

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	緭	${ }^{7}$	年	偁	7	年	脊	7t	年年	朿	
Traffic Volume（vph）	18	935	75	858	1224	653	171	956	1185	419	315	26
Future Volume（vph）	18	935	75	858	1224	653	171	956	1185	419	315	26
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ ft ）	220		220	0		350	160		175	240		0
Storage Lanes	1		1	2		1	1		2	2		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	0.95	0.88	0.97	0.95	0.95
Frt			0.850			0.850			0.850		0.989	
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	3467	3539	1599	1787	3610	2842	3467	3538	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1770	3539	1583	3467	3539	1599	1787	3610	2842	3467	3538	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			135			247			87		6	
Link Speed（mph）		40			50			35			35	
Link Distance（ft）		841			361			556			1071	
Travel Time（s）		14.3			4.9			10.8			20.9	
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Heavy Vehicles（\％）	2\％	2\％	2\％	1\％	2\％	1\％	1\％	0\％	0\％	1\％	1\％	0\％
Adj．Flow（vph）	29	1016	107	1100	1677	895	192	1028	1234	559	366	29
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	29	1016	107	1100	1677	895	192	1028	1234	559	395	0
Enter Blocked Intersection	Yes											
Lane Alignment	Left	Left	Right									
Median Width（ft）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector（ft）	20	100	20	20	100	20	20	100	20	20	100	
Trailing Detector（ft）	0	0	0	0	0	0	0	0	0	0	0	
Detector 1 Position（ft）	0	0	0	0	0	0	0	0	0	0	0	
Detector 1 Size（ft）	20	6	20	20	6	20	20	6	20	20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	$p \mathrm{~m}+\mathrm{ov}$	Prot	NA	$p m+o v$	Prot	NA	$p \mathrm{~m}+\mathrm{ov}$	Prot	NA	
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:
Operational Analysis \qquad
Analyst: SMC
Agency/Co.: IH
Date Performed: Dec 2019
Analysis Time Period:
Freeway/Dir of Travel:
PM Peak
Weaving Location:
NJ 24 EB at CR 510
Analysis Year:
EB
Description:

2019

D NJ 24/CR 510 CD
Inputs

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length

Level
Freeway
One-Sided 3 ln
600
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
0.00
0.00
\%
mi

Conversion to pc / h Under Base Conditions \qquad Volume Components

Volume, V	2593	307	349	0	veh/h
Peak hour factor, PHF	0.90	0.90	0.90	0.90	
Peak 15-min volume, v15	720	85	97	0	
Trucks and buses	5	5	5	0	$\%$
Recreational vehicles	0	0	0	0	$\%$
Trucks and buses PCE, ET	1.5	1.5	1.5	1.5	
Recreational vehicle PCE, ER	1.2	1.2	1.2	1.2	
Heavy vehicle adjustment, fHV	0.976	0.976	0.976	1.000	
Driver population adjustment, fP	1.00	1.00	1.00	1.00	
Flow rate, v	2953	350	397	0	pc / h

Volume ratio, VR
0.202

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc

Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	747	lc/h
Weaving lane changes, LCW	853	$l \mathrm{c} / \mathrm{h}$
Non-weaving vehicle index, INW	177	
Non-weaving lane change, LCNW	356	lc / h
Total lane changes, LCALL	1209	lc / h

Weaving and Non-Weaving Speeds

Weaving intensity factor, w	0.393	
Average weaving speed, SW	50.9	mi / h
Average non-weaving speed, SNW	53.7	mi / h

\qquad Weaving Segment Speed, Density, Level of Service and Capacity

Weaving segment speed, S Weaving segment density, D Level of service, LOS Weaving segment v / c ratio Weaving segment flow rate, v Weaving segment capacity, cW
53.1
23.2

C
0.603

3610 veh/h
5991 veh/h
mi / h
$\mathrm{pc} / \mathrm{mi} / \ln$

Limitations on Weaving Segments \qquad
If limit reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
$\#$

HCM 6th Signalized Intersection Summary
3：Park Avenue \＆Columbia Turnpike

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	种	7	\％${ }^{2}$	禹	7	\％	悉	Tr	${ }^{7}$	禹	
Traffic Volume（veh／h）	38	1032	324	1703	1326	159	231	358	602	394	868	158
Future Volume（veh／h）	38	1032	324	1703	1326	159	231	358	602	394	868	158
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	49	1098	377	1913	1542	199	272	437	684	448	998	272
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	，	1
Cap，veh／h	63	666	385	1193	1733	896	91	593	1421	308	567	154
Arrive On Green	0.04	0.19	0.19	0.35	0.50	0.50	0.05	0.17	0.17	0.09	0.20	0.20
Sat Flow，veh／h	1781	3582	1610	3456	3497	1535	1711	3526	2768	3483	2784	756
Grp Volume（v），veh／h	49	1098	377	1913	1542	199	272	437	684	448	640	630
Grp Sat Flow（s），veh／h／ln	1781	1791	1610	1728	1749	1535	1711	1763	1384	1742	1791	1749
Q Serve（g＿s），s	3.1	21.0	21.0	39.0	45.0	7.0	6.0	13.3	18.1	10.0	23.0	23.0
Cycle Q Clear（g＿c），s	3.1	21.0	21.0	39.0	45.0	7.0	6.0	13.3	18.1	10.0	23.0	23.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.43
Lane Grp Cap（c），veh／h	63	666	385	1193	1733	896	91	593	1421	308	365	356
V／C Ratio（X）	0.77	1.65	0.98	1.60	0.89	0.22	2.99	0.74	0.48	1.45	1.76	1.77
Avail Cap（c＿a），veh／h	158	666	385	1193	1733	896	91	593	1421	308	365	356
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	54.0	46.0	42.7	37.0	25.7	11.2	53.5	44.6	17.8	51.5	45.0	45.0
Incr Delay（d2），s／veh	18.0	299.0	40.4	275.7	6.2	0.1	926.3	4.8	0.3	221.3	351.6	357.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	1.7	36.7	14.2	60.9	18.1	2.1	25.9	6.1	5.3	13.8	45.6	45.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	72.0	345.0	83.1	312.7	31.9	11.4	979.8	49.4	18.0	272.8	396.6	402.1
LnGrp LOS	E	F	F	F	C	B	F	D	B	F	F	F
Approach Vol，veh／h		1524			3654			1393			1718	
Approach Delay，s／veh		271.4			177.8			215.7			366.3	
Approach LOS		F			F			F			F	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	15.0	26.0	44.0	28.0	11.0	30.0	9.0	63.0
Change Period（Y＋Rc），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0
Max Green Setting（Gmax），s	10.0	19.0	39.0	21.0	6.0	23.0	10.0	50.0
Max Q Clear Time（g＿c＋11），s	12.0	20.1	41.0	23.0	8.0	25.0	5.1	47.0
Green Ext Time（p＿c），s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5
Intersection Summary								
HCM 6th Ctrl Delay								
HCM 6th LOS	240.5							

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:
Operational Analysis
Analyst: SMC
Agency/Co.: IH
Date Performed:
Analysis Time Period:
Freeway/Dir of Travel:
Dec 2019

Weaving Location:
AM Peak
NJ 24 EB at CR 510
Analysis Year:
EB
2040
Description: NJ 24/CR 510 CD
Inputs \qquad

Segment Type Weaving configuration Number of lanes, N Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length

Freeway
One-Sided
3 ln
600 ft
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Level
0.00 \%
0.00 mi

Conversion to pc/h Under Base Conditions \qquad Volume Components

VFF	VRF	VFR	VRR	
3881	171	704	0	veh/h
0.90	0.90	0.90	0.90	
1078	48	196	0	
5	5	5	0	$\%$
0	0	0	0	$\%$
1.5	1.5	1.5	1.5	
1.2	1.2	1.2	1.2	
0.976	0.976	0.976	1.000	
1.00	1.00	1.00	1.00	
4420	195	802	0	pc / h

Volume ratio, VR
0.184

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	$\mathrm{int} / \mathrm{mi}$
Minimum RF lane changes, LCRF	1	$\mathrm{lc} / \mathrm{pc}$

Minimum FR lane changes, LCFR	1	$\mathrm{lc} / \mathrm{pc}$
Minimum RR lane changes, LCRR	$\mathrm{lc} / \mathrm{pc}$	

Weaving and Non-Weaving Speeds

Weaving intensity factor, W Average weaving speed, SW Average non-weaving speed, SNW
0.529
$47.7 \mathrm{mi} / \mathrm{h}$
$49.2 \mathrm{mi} / \mathrm{h}$

Weaving Segment Speed, Density, Level of Service and Capacity
Weaving segment speed, S $48.9 \mathrm{mi} / \mathrm{h}$ Weaving segment density, D $36.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service, LOS Weaving segment v/c ratio

E
Weaving segment flow rate, v
Weaving segment capacity, cW
0.876

5285
veh/h
6032 veh/h
Limitations on Weaving Segments \qquad
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	4374	600	a, b
		Maximum	Analyzed	
Density-based capacty, cIWL (pc/h/ln)		2350	2061	c
v/c ratio		1.00	0.876	d

Notes:

a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F .
E

\#

SCENARIO: No-Build

HCM 6th Signalized Intersection Summary
3：Park Avenue \＆Columbia Turnpike
12／23／2019

	4	\rightarrow	V	\checkmark		4	4	\dagger	\cdots	＊	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	糔	\％	氟	中4	「	\％	＊ 4	（\％「	\％${ }^{\text {\％}}$	性	
Traffic Volume（veh／h）	114	1550	131	968	1496	729	207	1067	1323	468	357	47
Future Volume（veh／h）	114	1550	131	968	1496	729	207	1067	1323	468	357	47
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1885	1870	1885	1885	1900	1900	1885	1885	1885
Adj Flow Rate，veh／h	181	1685	187	1241	2049	999	233	1147	1378	624	415	52
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Percent Heavy Veh，\％	2	2	2	1	2	1	1	0	0	1	1	1
Cap，veh／h	158	660	379	1202	1572	848	95	607	1455	308	652	81
Arrive On Green	0.09	0.19	0.19	0.35	0.44	0.44	0.05	0.17	0.17	0.09	0.20	0.20
Sat Flow，veh／h	1781	3554	1585	3483	3554	1598	1795	3610	2834	3483	3205	399
Grp Volume（v），veh／h	181	1685	187	1241	2049	999	233	1147	1378	624	231	236
Grp Sat Flow（s），veh／h／ln	1781	1777	1585	1742	1777	1598	1795	1805	1417	1742	1791	1813
Q Serve（g＿s），s	10.0	21.0	11.5	39.0	50.0	50.0	6.0	19.0	19.0	10.0	13.3	13.5
Cycle Q Clear（g＿c），s	10.0	21.0	11.5	39.0	50.0	50.0	6.0	19.0	19.0	10.0	13.3	13.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.22
Lane Grp Cap（c），veh／h	158	660	379	1202	1572	848	95	607	1455	308	365	369
V／C Ratio（X）	1.15	2.55	0.49	1.03	1.30	1.18	2.44	1.89	0.95	2.02	0.63	0.64
Avail Cap（c＿a），veh／h	158	660	379	1202	1572	848	95	607	1455	308	365	369
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	51.5	46.0	37.1	37.0	31.5	26.5	53.5	47.0	26.1	51.5	41.1	41.2
Incr Delay（d2），s／veh	117.1	702.6	1.0	34.6	141.1	92.2	680.4	406.5	13.1	472.2	3.5	3.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	9.5	73.4	4.4	21.2	50.2	41.5	20.7	42.7	18.1	24.5	6.2	6.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	168.6	748.6	38.1	71.6	172.6	118.7	733.9	453.5	39.2	523.7	44.7	44.9
LnGrp LOS	F	F	D	F	F	F	F	F	D	F	D	D
Approach Vol，veh／h		2053			4289			2758			1091	
Approach Delay，s／veh		632.7			130.8			270.2			318.7	
Approach LOS		F			F			F			F	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	15.0	26.0	44.0	28.0	11.0	30.0	15.0	57.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0				
Max Green Setting（Gmax），s	10.0	19.0	39.0	21.0	6.0	23.0	10.0	50.0				
Max Q Clear Time（g＿c＋11），s	12.0	21.0	41.0	23.0	8.0	15.5	12.0	52.0				
Green Ext Time（p＿c），s	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			289.8									
HCM 6th LOS			F									

Phone:
HCS 2010: Freeway Weaving Release 6.65
E-mail:
Fax:

Operational Analysis \qquad

Analyst:	SMC
Agency/Co.:	IH
Date Performed:	Dec 2019
Analysis Time Period:	PM Peak
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2040
Description:	NJ 24 EB at CR 510 CD

Inputs

Segment Type	Freeway	
Weaving configuration	One-Sided	
Number of lanes, N	3	ln
Weaving segment length, LS	600	ft
Freeway free-flow speed, FFS	65	mi
Minimum segment speed, SMIN	15	mi
Freeway maximum capacity, cIFL	2350	pc
Terrain type	Level	
\quad Grade	0.00	\%
\quad Length	0.00	mi

Conversion to pc / h Under Base Conditions Volume Components

Volume, V	2983	352	401	0	$\mathrm{veh} / \mathrm{h}$
Peak hour factor, PHF	0.90	0.90	0.90	0.90	
Peak 15-min volume, v15	829	98	111	0	
Trucks and buses	5	5	5	0	$\%$
Recreational vehicles	0	0	0	0	$\%$
Trucks and buses PCE, ET	1.5	1.5	1.5	1.5	
Recreational vehicle PCE, ER	1.2	1.2	1.2	1.2	
Heavy vehicle adjustment, fHV	0.976	0.976	0.976	1.000	
Driver population adjustment, fP	1.00	1.00	1.00	1.00	
Flow rate, v	3397	401	457	0	pc / h

Volume ratio, VR 0.202

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	$\mathrm{int} / \mathrm{mi}$
Minimum RF lane changes, LCRF	1	$\mathrm{lc} / \mathrm{pc}$

Minimum FR lane changes, LCFR	1	$\mathrm{lc} / \mathrm{pc}$
Minimum RR lane changes, LCRR		$\mathrm{lc} / \mathrm{pc}$
Minimum weaving lane changes, LCMIN	858	lc / h
Weaving lane changes, LCW	964	lc / h
Non-weaving vehicle index, INW	204	
Non-weaving lane change, LCNW	447	lc / h
Total lane changes, LCALL	1411	lc / h

Weaving and Non-Weaving Speeds

Weaving intensity factor, W	0.444	
Average weaving speed, SW	49.6	mi / h
Average non-weaving speed, SNW	52.0	mi / h
Weaving Segment Speed, Density, Level of Service and Capacity		
Weaving segment speed, S	51.5	mi / h
Weaving segment density, D	27.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	C	
Weaving segment v/c ratio	0.693	
Weaving segment flow rate, v	4152	veh $/ \mathrm{h}$
Weaving segment capacity, cW	5994	veh $/ \mathrm{h}$

If limit reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

Year 2020 alternatives analysis volume worksheets and Synchro reports

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	性	F＇r	\％${ }^{*}$	个4	「	\％	个个	F＇T	\％${ }^{*}$	中t	
Traffic Volume（veh／h）	34	934	293	562	1200	143	209	324	544	357	786	148
Future Volume（veh／h）	34	934	293	562	1200	143	209	324	544	357	786	148
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	54	1015	419	721	1644	196	235	348	567	476	914	163
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Percent Heavy Veh，\％	2	1	0	2	4	6	7	，	3	1	1	1
Cap，veh／h	69	764	964	758	1378	839	217	897	1311	533	852	152
Arrive On Green	0.04	0.21	0.21	0.22	0.39	0.39	0.08	0.17	0.17	0.15	0.28	0.28
Sat Flow，veh／h	1781	3582	2834	3456	3497	1535	1711	3526	2768	3483	3037	541
Grp Volume（v），veh／h	54	1015	419	721	1644	196	235	348	567	476	539	538
Grp Sat Flow（s），veh／h／ln	1781	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1788
Q Serve（g＿s），s	4.5	32.0	17.2	30.9	59.1	10.0	19.0	13.2	20.9	20.1	42.1	42.1
Cycle Q Clear（g＿c），s	4.5	32.0	17.2	30.9	59.1	10.0	19.0	13.2	20.9	20.1	42.1	42.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.30
Lane Grp Cap（c），veh／h	69	764	964	758	1378	839	217	897	1311	533	502	502
V／C Ratio（X）	0.78	1.33	0.43	0.95	1.19	0.23	1.08	0.39	0.43	0.89	1.07	1.07
Avail Cap（c＿a），veh／h	83	764	964	760	1378	839	217	897	1311	627	502	502
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.67	0.67	0.67	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	0.53	0.53	0.53	1.00	1.00	1.00
Uniform Delay（d），s／veh	71.5	59.0	38.3	57.7	45.5	17.7	68.6	51.9	29.2	62.3	54.0	54.0
Incr Delay（d2），s／veh	31.6	156.7	0.3	21.4	94.4	0.1	69.1	0.7	0.6	13.7	60.9	61.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.7	30.9	5.9	15.3	42.5	3.4	12.7	6.1	7.3	9.9	27.3	27.3

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	103.1	215.7	38.6	79.2	139.8	17.8	137.7	52.5	29.8	76.1	114.9	115.1
LnGrp LOS	F	F	D	E	F	B	F	D	C	E	F	F
Approach Vol，veh／h		1488			2561			1150		1553		
Approach Delay，s／veh		161.8			113.4		58.7		103.1			
Approach LOS	F			F			E		F			

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	27.9	45.1	37.9	39.0	24.0	49.1	10.8	66.1
Change Period（Y＋Rc），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0
Max Green Setting（Gmax），s	27.0	34.0	33.0	32.0	19.0	42.0	7.0	58.0
Max Q Clear Time（g＿c＋11），s	22.1	22.9	32.9	34.0	21.0	44.1	6.5	61.1
Green Ext Time（p＿c），s	0.8	3.6	0.0	0.0	0.0	0.0	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay 112.4

HCM 6th LOS
F

HCM 6th Signalized Intersection Summary
5：Park Avenue
02／04／2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7} 1$	\uparrow			中4	「＇	${ }^{7} 1$	中 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	0	16	14	1003	180	63	0	1014	92	112	1529	16
Future Volume（veh／h）	0	16	14	1003	180	63	0	1014	92	112	1529	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.85	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	0	17	15	1090	196	68	0	1102	100	122	1662	17
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	2	2	2	2	2	0	2	2	2	2	2
Cap，veh／h	0	22	20	945	346	120	0	1827	1248	166	2134	22
Arrive On Green	0.00	0.02	0.02	0.27	0.27	0.27	0.00	0.51	0.51	0.10	1.00	1.00
Sat Flow，veh／h	0	916	809	3456	1264	439	0	3647	1585	3456	3604	37
Grp Volume（v），veh／h	0	0	32	1090	0	264	0	1102	100	122	819	860
Grp Sat Flow（s），veh／h／ln	0	0	1725	1728	0	1703	0	1777	1585	1728	1777	1864
Q Serve（g＿s），s	0.0	0.0	2.8	41.0	0.0	20.0	0.0	32.8	2.1	5.1	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	0.0	2.8	41.0	0.0	20.0	0.0	32.8	2.1	5.1	0.0	0.0
Prop In Lane	0.00		0.47	1.00		0.26	0.00		1.00	1.00		0.02
Lane Grp Cap（c），veh／h	0	0	42	945	0	465	0	1827	1248	166	1052	1104
V／C Ratio（X）	0.00	0.00	0.76	1.15	0.00	0.57	0.00	0.60	0.08	0.73	0.78	0.78
Avail Cap（c＿a），veh／h	0	0	207	945	0	465	0	1827	1248	267	1052	1104
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（I）	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.28	0.28	0.28
Uniform Delay（d），s／veh	0.0	0.0	72.7	54.5	0.0	46.9	0.0	25.7	3.6	66.8	0.0	0.0
Incr Delay（d2），s／veh	0.0	0.0	23.4	81.4	0.0	1.6	0.0	1.5	0.1	1.8	1.7	1.6
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	0.0	1.5	27.9	0.0	8.5	0.0	14.1	1.9	2.2	0.5	0.5
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	0.0	96.1	135.9	0.0	48.5	0.0	27.2	3.7	68.6	1.7	1.6
LnGrp LOS	A	A	F	F	A	D	A	C	A	E	A	A
Approach Vol，veh／h		32			1354			1202			1801	
Approach Delay，s／veh		96.1			118.9			25.2			6.2	
Approach LOS		F			F			C			A	

Timer－Assigned Phs	1	2	4	6	8
Phs Duration（G＋Y＋Rc），s	11.7	83.1	8.2	94.8	47.0
Change Period（Y＋Rc），s	4.5	6.0	4.5	6.0	6.0
Max Green Setting（Gmax），s	11.6	58.4	18.0	74.5	41.0
Max Q Clear Time（g＿c＋11），s	7.1	34.8	4.8	2.0	43.0
Green Ext Time（p＿c），s	0.1	8.9	0.1	17.7	0.0

Intersection Summary

HCM 6th Ctrl Delay 46.8
HCM 6th LOS

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:

Operational Analysis \qquad

Analyst:	VJS
Agency/Co.:	IH
Date Performed:	Feb 2020
Analysis Time Period:	AM Peak - Alt 1
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2020
Description:	NJ 24/CR 510 CD

Inputs \qquad

Segment Type
Freeway
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
One-Sided
3 ln

600 ft
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Grade
Level

Length
0.00
\%
0.00 mi

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	902	
Weaving lane changes, LCW	1008	lc/h
Non-weaving vehicle index, INW	241	
Non-weaving lane change, LCNW	576	lc/h
Total lane changes, LCALL	1584	lc/h

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.486

Average weaving speed, SW	48.6	mi / h
Average non-weaving speed, SNW	50.6	mi / h

Limitations on Weaving Segments \qquad
If $\bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	4366	600	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	2062	c	
V/cratio			Maximum	Analyzed

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

HCM 6th Signalized Intersection Summary
3：Park Avenue \＆Columbia Turnpike
02／04／2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个	T＇	${ }^{7}{ }^{*} 1$	个4	「	\％	个4	「「	\％	中 ${ }^{\text {c }}$	
Traffic Volume（veh／h）	103	1402	119	667	1354	660	188	966	1197	423	323	42
Future Volume（veh／h）	103	1402	119	667	1354	660	188	966	1197	423	323	42
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	134	1491	138	749	1574	825	221	1178	1360	481	371	72
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	157	1279	1424	173	1116	724	249	947	882	533	827	159
Arrive On Green	0.09	0.36	0.36	0.05	0.32	0.32	0.05	0.09	0.09	0.15	0.28	0.28
Sat Flow，veh／h	1781	3582	2834	3456	3497	1535	1711	3526	2768	3483	2997	576
Grp Volume（v），veh／h	134	1491	138	749	1574	825	221	1178	1360	481	220	223
Grp Sat Flow（s），veh／h／ln	1781	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1782
Q Serve（g＿s），s	10.4	50.0	3.6	7.0	44.7	44.7	18.0	37.6	37.6	19.0	14.2	14.5
Cycle Q Clear（g＿c），s	10.4	50.0	3.6	7.0	44.7	44.7	18.0	37.6	37.6	19.0	14.2	14.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.32
Lane Grp Cap（c），veh／h	157	1279	1424	173	1116	724	249	947	882	533	494	492
V／C Ratio（X）	0.85	1.17	0.10	4.33	1.41	1.14	0.89	1.24	1.54	0.90	0.45	0.45
Avail Cap（c＿a），veh／h	165	1279	1424	173	1116	724	342	947	882	572	494	492
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	0.09	0.09	0.09	1.00	1.00	1.00
Uniform Delay（d），s／veh	62.9	45.0	18.2	66.5	47.7	37.0	65.5	63.8	58.6	58.3	41.8	41.9
Incr Delay（d2），s／veh	31.7	83.3	0.0	1514.1	190.2	78.7	2.2	110.8	244.8	17.0	2.9	3.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	6.0	36.3	1.1	39.3	48.1	38.8	8.5	32.5	45.6	9.6	6.7	6.8
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	94.7	128.3	18.2	1580.6	237.9	115.7	67.7	174.6	303.3	75.3	44.7	44.9
LnGrp LOS	F	F	B	F	F	F	E	F	F	E	D	D
Approach Vol，veh／h		1763			3148			2759			924	
Approach Delay，s／veh		117.2			525.3			229.5			60.7	
Approach LOS		F			F			F			E	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	26.4	44.6	12.0	57.0	25.4	45.6	17.3	51.7
Change Period（Y＋Rc），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0
Max Green Setting（Gmax），s	23.0	36.0	7.0	50.0	28.0	31.0	13.0	44.0
Max Q Clear Time（g＿c＋11），s	21.0	39.6	9.0	52.0	20.0	16.5	12.4	46.7
Green Ext Time（p＿c），s	0.4	0.0	0.0	0.0	0.4	2.2	0.0	0.0

Intersection Summary
HCM 6th Ctrl Delay 296.7
HCM 6th LOS F

HCM 6th Signalized Intersection Summary
5：Park Avenue \＆Alt 1 Ramp

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		7＊	\hat{F}			个 \uparrow	「	\％${ }^{1+1}$	中 ${ }^{\text {c }}$	
Traffic Volume（veh／h）	0	15	16	545	98	34	0	2317	250	250	526	35
Future Volume（veh／h）	0	15	16	545	98	34	0	2317	250	250	526	35
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	0	16	17	592	107	37	0	2518	272	272	572	38
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	2	2	2	2	2	0	2	2	2	2	2
Cap，veh／h	0	21	23	469	180	62	0	2118	1160	320	2437	162
Arrive On Green	0.00	0.03	0.03	0.14	0.14	0.14	0.00	0.60	0.60	0.19	1.00	1.00
Sat Flow，veh／h	0	830	882	3456	1328	459	0	3647	1585	3456	3382	224
Grp Volume（v），veh／h	0	0	33	592	0	144	0	2518	272	272	300	310
Grp Sat Flow（s），veh／h／n	0	0	1712	1728	0	1788	0	1777	1585	1728	1777	1830
Q Serve（g＿s），s	0.0	0.0	2.7	19.0	0.0	10.6	0.0	83.4	7.8	10.7	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	0.0	2.7	19.0	0.0	10.6	0.0	83.4	7.8	10.7	0.0	0.0
Prop In Lane	0.00		0.52	1.00		0.26	0.00		1.00	1.00		0.12
Lane Grp Cap（c），veh／h	0	0	44	469	0	243	0	2118	1160	320	1280	1319
V／C Ratio（X）	0.00	0.00	0.75	1.26	0.00	0.59	0.00	1.19	0.23	0.85	0.23	0.24
Avail Cap（c＿a），veh／h	O	－	220	469	0	243	0	2118	1160	402	1280	1319
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（l）	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.09	0.09	0.09
Uniform Delay（d），s／veh	0.0	0.0	67.7	60.5	0.0	56.9	0.0	28.3	6.1	56.1	0.0	0.0
Incr Delay（d2），s／veh	0.0	0.0	21.8	134.3	0.0	3.8	0.0	90.1	0.5	1.4	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	0.0	1.4	16.8	0.0	4.9	0.0	59.5	4.3	4.2	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	0.0	89.5	194.8	0.0	60.7	0.0	118.4	6.6	57.5	0.0	0.0
LnGrp LOS	A	A	F	F	A	E	A	F	A	E	A	A
Approach Vol，veh／h		33			736			2790			882	
Approach Delay，s／veh		89.5			168.5			107.5			17.8	
Approach LOS		F			F			F			B	

Timer－Assigned Phs	1	2	4	6	8
Phs Duration（G＋Y＋Rc），s	17.5	89.4	8.1	106.9	25.0
Change Period（Y＋Rc），s	4.5	6.0	4.5	6.0	6.0
Max Green Setting（Gmax），s	16.3	65.7	18.0	86.5	19.0
Max Q Clear Time（g＿c＋11），s	12.7	85.4	4.7	2.0	21.0
Green Ext Time（p＿c），s	0.3	0.0	0.1	3.5	0.0

Intersection Summary
HCM 6th Ctrl Delay 99.7

HCM 6th LOS F

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:

Operational Analysis \qquad

Analyst:	VJS
Agency/Co.:	IH
Date Performed:	Feb 2020
Analysis Time Period:	PM Peak - Alt 1
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2020
Description:	NJ 24/CR 510 CD

Inputs \qquad

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Freeway
One-Sided
$3 \quad \ln$

600 ft
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Grade
Level

Length
0.00
\%
0.00 mi

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	776	lc/h
Weaving lane changes, LCW	882	lc/h
Non-weaving vehicle index, INW	186	
Non-weaving lane change, LCNW	384	lc/h
Total lane changes, LCALL	1266	lc/h

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.407

```
Average weaving speed, SW
50.5
    mi/h
Average non-weaving speed, SNW 53.2 mi/h
```


Limitations on Weaving Segments \qquad
$\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
EIH Engineers.P.C.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24 MORRIS COUNTY, NEW JERSEY

Alt. 2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	「「で	${ }^{7} 1$	44	「	${ }^{*}$	44	「「「	＊＊	中 ${ }^{\text {c }}$	
Traffic Volume（veh／h）	0	968	293	562	1200	143	209	358	544	357	786	148
Future Volume（veh／h）	0	968	293	562	1200	143	209	358	544	357	786	148
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	0	1052	419	721	1644	196	235	385	567	476	914	163
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Percent Heavy Veh，\％	0	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	0	788	1039	691	1585	930	251	942	1293	533	830	148
Arrive On Green	0.00	0.22	0.22	0.20	0.45	0.45	0.24	0.45	0.45	0.15	0.27	0.27
Sat Flow，veh／h	0	3676	2834	3456	3497	1535	1711	3526	2768	3483	3037	541
Grp Volume（v），veh／h	0	1052	419	721	1644	196	235	385	567	476	539	538
Grp Sat Flow（s），veh／h／ln	0	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1788
Q Serve（g＿s），s	0.0	33.0	16.5	30.0	68.0	8.6	20.2	11.1	18.8	20.1	41.0	41.0
Cycle Q Clear（g＿c），s	0.0	33.0	16.5	30.0	68.0	8.6	20.2	11.1	18.8	20.1	41.0	41.0
Prop In Lane	0.00		1.00	1.00		1.00	1.00		1.00	1.00		0.30
Lane Grp Cap（c），veh／h	0	788	1039	691	1585	930	251	942	1293	533	490	489
V／C Ratio（X）	0.00	1.34	0.40	1.04	1.04	0.21	0.94	0.41	0.44	0.89	1.10	1.10
Avail Cap（c＿a），veh／h	0	788	1039	691	1585	930	251	942	1293	627	490	489
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00
Upstream Filter（I）	0.00	1.00	1.00	1.00	1.00	1.00	0.77	0.77	0.77	1.00	1.00	1.00
Uniform Delay（d），s／veh	0.0	58.5	35.3	60.0	41.0	13.3	55.9	33.5	19.9	62.3	54.5	54.5
Incr Delay（d2），s／veh	0.0	159.4	0.3	46.0	32.8	0.1	33.7	1.0	0.8	13.7	71.0	71.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.0	32.2	5.6	17.2	34.7	2.9	10.4	4.5	4.8	9.9	27.9	27.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	217.9	35.6	106.0	73.8	13.4	89.6	34.5	20.7	76.1	125.5	125.7
LnGrp LOS	A	F	D	F	F	B	F	C	C	E	F	F
Approach Vol，veh／h		1471			2561			1187			1553	
Approach Delay，s／veh		165.9			78.2			38.8			110.4	
Approach LOS		F			E			D			F	
Timer－Assigned Phs	1	2	3	4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	27.9	47.1	35.0	40.0	27.0	48.0		75.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	7.0	5.0	7.0	5.0	7.0		7.0				
Max Green Setting（Gmax），s	27.0	36.0	30.0	33.0	22.0	41.0		68.0				
Max Q Clear Time（g＿c＋11），s	22.1	20.8	32.0	35.0	22.2	43.0		70.0				
Green Ext Time（p＿c），s	0.8	4.4	0.0	0.0	0.0	0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			97.8									
HCM 6th LOS			F									

HCM 6th Signalized Intersection Summary
5: Park Avenue \& Alt 2 Ramp
02/04/2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7 * 1}$	F			44	「	${ }^{7 *}$	中t	
Traffic Volume (veh/h)	0	30	9	1033	185	130	0	738	92	138	1745	3
Future Volume (veh/h)	0	30	9	1033	185	130	0	738	92	138	1745	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	33	10	1123	201	141	0	802	100	150	1897	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	2	2	2	2	2	0	2	2	2	2	2
Cap, veh/h	0	43	13	991	293	206	0	1726	1224	194	2082	3
Arrive On Green	0.00	0.03	0.03	0.29	0.29	0.29	0.00	0.49	0.49	0.11	1.00	1.00
Sat Flow, veh/h	0	1378	417	3456	1023	718	0	3647	1585	3456	3640	6
Grp Volume(v), veh/h	0	0	43	1123	0	342	0	802	100	150	926	974
Grp Sat Flow(s),veh/h/ln	0	0	1795	1728	0	1741	0	1777	1585	1728	1777	1869
Q Serve(g_s), s	0.0	0.0	3.6	43.0	0.0	26.2	0.0	22.5	2.3	6.3	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	3.6	43.0	0.0	26.2	0.0	22.5	2.3	6.3	0.0	0.0
Prop In Lane	0.00		0.23	1.00		0.41	0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	0	0	56	991	0	499	0	1726	1224	194	1016	1069
V/C Ratio(X)	0.00	0.00	0.76	1.13	0.00	0.69	0.00	0.46	0.08	0.77	0.91	0.91
Avail Cap(c_a), veh/h	0	0	215	991	0	499	0	1726	1224	267	1016	1069
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.18	0.18	0.18
Uniform Delay (d), s/veh	0.0	0.0	72.1	53.5	0.0	47.5	0.0	25.6	4.1	65.6	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	18.9	72.8	0.0	3.9	0.0	0.9	0.1	1.7	3.0	2.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	1.9	28.0	0.0	11.6	0.0	9.7	2.0	2.7	0.9	0.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	91.0	126.3	0.0	51.4	0.0	26.5	4.3	67.4	3.0	2.9
LnGrp LOS	A	A	F	F	A	D	A	C	A	E	A	A
Approach Vol, veh/h		43			1465			902			2050	
Approach Delay, s/veh		91.0			108.8			24.0			7.7	
Approach LOS		F			F			C			A	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	12.9	78.9	9.2	91.8	49.0
Change Period (Y+Rc), s	4.5	6.0	4.5	6.0	6.0
Max Green Setting (Gmax), s	11.6	56.4	18.0	72.5	43.0
Max Q Clear Time (g_c+11), s	8.3	24.5	5.6	2.0	45.0
Green Ext Time (p_c), s	0.1	6.6	0.1	23.9	0.0

Intersection Summary
HCM 6th Ctrl Delay 45.0
HCM 6th LOS

Intersection				
Intersection Delay, s/veh	73.4			
Intersection LOS	F			
Approach	EB	WB	SB	SW
Entry Lanes	1	2	1	0
Conflicting Circle Lanes	2	2	2	2
Adj Approach Flow, veh/h	239	2046	159	0
Demand Flow Rate, veh/h	244	2087	162	0
Vehicles Circulating, veh/h	124	0	1381	1381
Vehicles Exiting, veh/h	1419	368	0	706
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.8	85.8	15.5	0.0
Approach LOS	A	F	C	-

Lane	Left	Left	Right	Left
Designated Moves	LT	LT	R	LR
Assumed Moves	LT	LT	R	LR
RT Channelized		0.662	0.338	1.000
Lane Util	1.000	4.293	4.113	4.113
Critical Headway, s	4.113	1381	706	162
Entry Flow, veh/h	244	1130	1130	430
Cap Entry Lane, veh/h	1036	0.980	0.980	0.981
Entry HV Adj Factor	0.980	1354	692	159
Flow Entry, veh/h	239	1108	1108	422
Cap Entry, veh/h	1016	1.222	0.625	0.377
VIC Ratio	0.236	123.7	11.6	15.5
Control Delay, s/veh	5.8	F	B	C
LOS	43	5	2	

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:

Operational Analysis \qquad
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
AM Peak
NJ 24 EB at CR 510
EB
Description: NJ $24 / \mathrm{CR} 510 \mathrm{CD}$ - ALT 2
Inputs \qquad
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
2020

Segment Type	Freeway	
Weaving configuration	One-Sided	
Number of lanes, N	3	ln
Weaving segment length, LS	1050	ft
Freeway free-flow speed, FFS	65	mi / h
Minimum segment speed, SMIN	15	mi / h
Freeway maximum capacity, cIFL	2350	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Terrain type		
Grade	0.00	
Length	0.00	mi

Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	1680	$1 \mathrm{lc} / \mathrm{h}$
Weaving lane changes, LCW	1847	lc/h
Non-weaving vehicle index, INW	421	
Non-weaving lane change, LCNW	816	lc/h
Total lane changes, LCALL	2663	$l c / h$

Weaving and Non-Weaving Speeds
Weaving intensity factor, w 0.471

```
Average weaving speed, SW
49.0
    mi/h
Average non-weaving speed, SNW 43.8 mi/h
```

	Weaving Segment Speed, Density, Level of Service and Capacity____	45.2
Weaving segment speed, S	mi / h	
Weaving segment density, D	41.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LoS	E	
Weaving segment v/c ratio	0.947	
Weaving segment flow rate, v	5562	$\mathrm{veh} / \mathrm{h}$
Weaving segment capacity, cW	5874	$\mathrm{veh} / \mathrm{h}$

Limitations on Weaving Segments \qquad
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	5536	1050	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	2007	c	
v/cratio			Maximum	Analyzed

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

IIH Engineers. P.C.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24 MORRIS COUNTY, NEW JERSEY

scenario: Alt-2 YEAR:
PEAK HOUR:

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	「「	7	44	F＇	${ }^{1}$	44	「「゙	7	中 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	0	1505	119	334	1354	660	188	1069	1197	423	323	42
Future Volume（veh／h）	0	1505	119	334	1354	660	188	1069	1197	423	323	42
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	0	1601	138	375	1574	825	221	1304	1360	481	371	72
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Percent Heavy Veh，\％	0	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	0	1356	1483	173	1624	877	248	1032	949	373	765	147
Arrive On Green	0.00	0.38	0.38	0.05	0.46	0.46	0.05	0.10	0.10	0.11	0.26	0.26
Sat Flow，veh／h	0	3676	2834	3456	3497	1535	1711	3526	2768	3483	2997	576
Grp Volume（v），veh／h	0	1601	138	375	1574	825	221	1304	1360	481	220	223
Grp Sat Flow（s），veh／h／ln	0	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1782
Q Serve（g＿s），s	0.0	53.0	3.4	7.0	61.4	65.0	18.0	41.0	41.0	15.0	14.6	14.9
Cycle Q Clear（g＿c），s	0.0	53.0	3.4	7.0	61.4	65.0	18.0	41.0	41.0	15.0	14.6	14.9
Prop In Lane	0.00		1.00	1.00		1.00	1.00		1.00	1.00		0.32
Lane Grp Cap（c），veh／h	0	1356	1483	173	1624	877	248	1032	949	373	457	455
V／C Ratio（X）	0.00	1.18	0.09	2.17	0.97	0.94	0.89	1.26	1.43	1.29	0.48	0.49
Avail Cap（c＿a），veh／h	0	1356	1483	173	1624	877	305	1032	949	373	457	455
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00
Upstream Filter（l）	0.00	1.00	1.00	1.00	1.00	1.00	0.09	0.09	0.09	1.00	1.00	1.00
Uniform Delay（d），s／veh	0.0	43.5	16.7	66.5	36.5	27.8	65.6	63.2	57.8	62.5	44.3	44.4
Incr Delay（d2），s／veh	0.0	89.2	0.0	545.3	15.6	17.7	2.9	119.1	195.5	148.8	3.6	3.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	39.5	1.1	16.1	27.9	27.3	8.5	36.6	42.6	14.3	6.9	7.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	132.7	16.8	611.8	52.2	45.5	68.5	182.3	253.3	211.3	47.9	48.1
LnGrp LOS	A	F	B	F	D	D	E	F	F	F	D	D
Approach Vol，veh／h		1739			2774			2885			924	
Approach Delay，s／veh		123.5			125.8			207.1			133.0	
Approach LOS		F			F			F			F	
Timer－Assigned Phs	1	2	3	4	5	6		8				
Phs Duration（ $G+Y+R c$ ），s	20.0	48.0	12.0	60.0	25.3	42.7		72.0				
Change Period（Y＋Rc），s	5.0	7.0	5.0	7.0	5.0	7.0		7.0				
Max Green Setting（Gmax），s	15.0	41.0	7.0	53.0	25.0	31.0		65.0				
Max Q Clear Time（g＿c＋11），s	17.0	43.0	9.0	55.0	20.0	16.9		67.0				
Green Ext Time（p＿c），s	0.0	0.0	0.0	0.0	0.3	2.1		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			154.3									
HCM 6th LOS			F									

HCM 6th Signalized Intersection Summary
5：Park Avenue \＆Alt 2 Ramp
02／04／2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		\％＊	\uparrow			个个	「	${ }^{7} 1$	性	
Traffic Volume（veh／h）	0	15	16	545	98	137	0	2317	250	250	526	35
Future Volume（veh／h）	0	15	16	545	98	137	0	2317	250	250	526	35
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	0	16	17	592	107	149	0	2518	272	272	572	38
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	2	2	2	2	2	0	2	2	2	2	2
Cap，veh／h	0	21	23	469	96	134	0	2118	1160	320	2437	162
Arrive On Green	0.00	0.03	0.03	0.14	0.14	0.14	0.00	0.60	0.60	0.19	1.00	1.00
Sat Flow，veh／h	0	830	882	3456	708	985	0	3647	1585	3456	3382	224
Grp Volume（v），veh／h	0	0	33	592	0	256	0	2518	272	272	300	310
Grp Sat Flow（ s ，veh／h／ln	0	0	1712	1728	0	1693	0	1777	1585	1728	1777	1830
Q Serve（g＿s），s	0.0	0.0	2.7	19.0	0.0	19.0	0.0	83.4	7.8	10.7	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	0.0	2.7	19.0	0.0	19.0	0.0	83.4	7.8	10.7	0.0	0.0
Prop In Lane	0.00		0.52	1.00		0.58	0.00		1.00	1.00		0.12
Lane Grp Cap（c），veh／h	0	0	44	469	0	230	0	2118	1160	320	1280	1319
V／C Ratio（X）	0.00	0.00	0.75	1.26	0.00	1.11	0.00	1.19	0.23	0.85	0.23	0.24
Avail Cap（c＿a），veh／h	0	0	220	469	0	230	0	2118	1160	402	1280	1319
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（l）	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.09	0.09	0.09
Uniform Delay（d），s／veh	0.0	0.0	67.7	60.5	0.0	60.5	0.0	28.3	6.1	56.1	0.0	0.0
Incr Delay（d2），s／veh	0.0	0.0	21.8	134.3	0.0	93.4	0.0	90.1	0.5	1.4	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.0	0.0	1.4	16.8	0.0	13.9	0.0	59.5	4.3	4.2	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	0.0	89.5	194.8	0.0	153.9	0.0	118.4	6.6	57.5	0.0	0.0
LnGrp LOS	A	A	F	F	A	F	A	F	A	E	A	A
Approach Vol，veh／h		33			848			2790			882	
Approach Delay，s／veh		89.5			182.4			107.5			17.8	
Approach LOS		F			F			F			B	

Timer－Assigned Phs	1	2	4	6	8
Phs Duration（G＋Y＋Rc），s	17.5	89.4	8.1	106.9	25.0
Change Period（Y＋Rc），s	4.5	6.0	4.5	6.0	6.0
Max Green Setting（Gmax），s	16.3	65.7	18.0	86.5	19.0
Max Q Clear Time（g＿c＋11），s	12.7	85.4	4.7	2.0	21.0
Green Ext Time（p＿c），s	0.3	0.0	0.1	3.5	0.0

Intersection Summary

HCM 6th Ctrl Delay 104.0
HCM 6th LOS
F

Intersection					
Intersection LOS	B				
Approach	EB		WB	SB	SW
Entry Lanes	1		2	1	0
Conflicting Circle Lanes	2		2	2	2
Adj Approach Flow, veh/h	560		1131	384	0
Demand Flow Rate, veh/h	571		1154	391	0
Vehicles Circulating, veh/h	277		0	751	751
Vehicles Exiting, veh/h	865		848	0	403
Follow-Up Headway, s	3.186		3.186	3.186	3.186
Ped Vol Crossing Leg, \#h	0		0	0	0
Ped Cap Adj	1.000		1.000	1.000	1.000
Approach Delay, s/veh	13.1		10.7	15.9	0.0
Approach LOS	B		B	C	.
Lane	Left	Left	Right	Left	
Designated Moves	LT	LT	R	LR	
Assumed Moves	LT	LT	R	LR	
RT Channelized					
Lane Util	1.000	0.651	0.349	1.000	
Critical Headway, s	4.113	4.293	4.113	4.113	
Entry Flow, veh/h	571	751	403	391	
Cap Entry Lane, veh/h	931	1130	1130	668	
Entry HV Adj Factor	0.980	0.980	0.980	0.982	
Flow Entry, veh/h	560	736	395	384	
Cap Entry, veh/h	913	1108	1108	656	
VIC Ratio	0.613	0.665	0.357	0.585	
Control Delay, s/veh	13.1	12.8	6.8	15.9	
LOS	B	B	A	C	
95th \%tile Queue, veh	4	5	2	4	

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:

Operational Analysis \qquad
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
PM Peak
NJ 24 EB at CR 510
EB
Description: NJ $24 / \mathrm{CR} 510 \mathrm{CD}$ - ALT 2
Inputs \qquad
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
2020

Segment Type	Freeway	
Weaving configuration	One-S	
Number of lanes, N	3	1 n
Weaving segment length, LS	1050	ft
Freeway free-flow speed, FFS	65	mi/h
Minimum segment speed, SMIN	15	mi/h
Freeway maximum capacity, cIFL	2350	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Terrain type	Level	
Grade	0.00	\%
Length	0.00	mi

Configuration Characteristics

Number of maneuver lanes, NWL	2	1 n
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	1168	lc/h
Weaving lane changes, LCW	1335	lc/h
Non-weaving vehicle index, INW	324	
Non-weaving lane change, LCNW	626	lc / h
Total lane changes, LCALL	1961	lc/h

Weaving and Non-Weaving Speeds
Weaving intensity factor, w 0.370

```
Average weaving speed, SW
51.5
    mi/h
Average non-weaving speed, SNW
49.8
mi/h
```

Weaving Segment Speed, Density, Level of Service and Capacity

$\overline{\text { If }}$ limit reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

HCM 6th Signalized Intersection Summary
3: Park Avenue \& Columbia Turnpike

[^2]| | \dagger | \rightarrow | \downarrow | \checkmark | 4 | 4 | 4 | 4 | \％ | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | $\hat{\beta}$ | | ${ }^{4}{ }^{\text {M }}$ | $\hat{\beta}$ | | | 螌 | 1 | 哏 | 瑯 | |
| Traffic Volume（veh／h） | 0 | 23 | 7 | 1027 | 256 | 1 | 0 | 875 | 100 | 245 | 1664 | 16 |
| Future Volume（veh／h） | 0 | 23 | 7 | 1027 | 256 | 1 | 0 | 875 | 100 | 245 | 1664 | 16 |
| Initial $Q(Q b)$ ，veh | 0 | 0 | 0 | 0 | ， | 0 | 0 | 875 | 100 | 0 | 1604 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach | | No | | | No | | | No | | | No | |
| Adj Sat Flow，veh／h／ln | 0 | 1870 | 1870 | 1870 | 1870 | 1870 | 0 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 0 | 25 | 8 | 1116 | 278 | 1 | 0 | 951 | 109 | 266 | 1809 | 17 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 0 | 2 | ， | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0.92 |
| Cap，veh／h | 0 | 45 | 14 | 1002 | 658 | 2 | 0 | 1651 | 1196 | 319 | 2116 | 20 |
| Arrive On Green | 0.00 | 0.03 | 0.03 | 0.29 | 0.35 | 0.35 | 0.00 | 0.46 | 0.46 | 0.09 | 0.59 | 0.59 |
| Sat Flow，veh／h | 0 | 1358 | 434 | 3456 | 1862 | 7 | 0 | 3647 | 1585 | 3456 | 3607 | 34 |
| Grp Volume（v），veh／h | 0 | 0 | 33 | 1116 | 0 | 279 | 0 | 951 | 109 | 266 | 890 | 936 |
| Grp Sat Flow（s），veh／h／n | 0 | 0 | 1792 | 1728 | 0 | 1869 | 0 | 1777 | 1585 | 1728 | 1777 | 1864 |
| Q Serve（g＿s），s | 0.0 | 0.0 | 2.7 | 43.5 | 0.0 | 17.0 | 0.0 | 29.4 | 2.7 | 11.4 | 62.2 | 62.5 |
| Cycle Q Clear（g＿c），s | 0.0 | 0.0 | 2.7 | 43.5 | 0.0 | 17.0 | 0.0 | 29.4 | 2.7 | 11.4 | 62.2 | 62.5 |
| Prop In Lane | 0.00 | | 0.24 | 1.00 | | 0.00 | 0.00 | | 1.00 | 1.00 | | 0.02 |
| Lane Grp Cap（c），veh／h | 0 | 0 | 60 | 1002 | 0 | 660 | 0 | 1651 | 1196 | 319 | 1042 | 1094 |
| V／C Ratio（X） | 0.00 | 0.00 | 0.55 | 1.11 | 0.00 | 0.42 | 0.00 | 0.58 | 0.09 | 0.84 | 0.85 | 0.86 |
| Avail Cap（c＿a），veh／h | 0 | 0 | 215 | 1002 | 0 | 822 | 0 | 1651 | 1196 | 463 | 1042 | 1094 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（l） | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay（d），s／veh | 0.0 | 0.0 | 71.4 | 53.2 | 0.0 | 36.9 | 0.0 | 29.4 | 4.9 | 67.0 | 25.7 | 25.7 |
| Incr Delay（d2），s／veh | 0.0 | 0.0 | 7.7 | 65.0 | 0.0 | 0.4 | 0.0 | 1.5 | 0.2 | 8.5 | 8.9 | 8.6 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（50\％），veh／ln | 0.0 | 0.0 | 1.4 | 27.2 | 0.0 | 7.7 | 0.0 | 12.8 | 0.8 | 5.3 | 26.5 | 27.9 |
| Unsig．Movement Delay，s／veh | | | | | | | | | | | | |
| LnGrp Delay（d），s／veh | 0.0 | 0.0 | 79.1 | 118.2 | 0.0 | 37.3 | 0.0 | 30.8 | 5.0 | 75.5 | 34.6 | 34.4 |
| LnGrp LOS | A | A | E | F | A | D | A | C | A | E | C | ， |
| Approach Vol，veh／h | | 33 | | | 1395 | | | 1060 | | | 2092 | |
| Approach Delay，s／veh | | 79.1 | | | 102.0 | | | 28.2 | | | 39.7 | |
| Approach LOS | | E | | | F | | | C | | | D | |
| Timer－Assigned Phs | 1 | 2 | 3 | 4 | | 6 | | 8 | | | | |
| Phs Duration（ $G+Y+R \mathrm{c}$ ），s | 18.3 | 74.2 | 48.0 | 9.5 | | 92.5 | | 57.5 | | | | |
| Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ）， s | 4.5 | 4.5 | 4.5 | 4.5 | | 4.5 | | 4.5 | | | | |
| Max Green Setting（Gmax），s | 20.1 | 50.4 | 43.5 | 18.0 | | 75.0 | | 66.0 | | | | |
| Max Q Clear Time（g＿c＋11），s | 13.4 | 31.4 | 45.5 | 4.7 | | 64.5 | | 19.0 | | | | |
| Green Ext Time（p＿c），s | 0.5 | 6.9 | 0.0 | 0.1 | | 7.7 | | 1.5 | | | | |
| Intersection Summary | | | | | | | | | | | | |
| HCM 6th Ctrl Delay 56.3 | | | | | | | | | | | | |
| HCM 6th LOS | E | | | | | | | | | | | |

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:
Operational Analysis \qquad

Analyst:	SMC
Agency/Co.:	IH
Date Performed:	Dec 2019
Analysis Time Period:	AM Peak
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2020
Description:	NJ 24/CR 510 CD - Alt 3

Inputs \qquad

Segment Type

Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
vel
Grade
Length
0.00

Freeway
One-Sided 3 ln
600 ft
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Conversion to pc / h Under Base Conditions \qquad Volume Components
\%
0.00 mi

VFF	VRF	VFR	VRR		
2865	155	1360	560	$\mathrm{veh} / \mathrm{h}$	
0.90	0.90	0.90	0.90		
796	43	378	156		
5	5	5	0	$\%$	
0	0	0	0	$\%$	
1.5	1.5	1.5	1.5		
1.2	1.2	1.2	1.2		
0.976	0.976	0.976	1.000		
1.00	1.00	1.00	1.00		
3263	177	1549	622	pc / h	

Volume ratio, VR 0.308

Configuration Characteristics

Number of maneuver lanes, NWL
Interchange density, ID
Minimum RF lane changes, LCRF

2

$1.0 \quad$ int/mi
$1 \quad 1 \mathrm{c} / \mathrm{pc}$

Minimum FR lane changes, LCFR	1	$\mathrm{lc} / \mathrm{pc}$
Minimum RR lane changes, LCRR		$\mathrm{lc} / \mathrm{pc}$
Minimum weaving lane changes, LCMIN	1726	lc / h
Weaving lane changes, LCW	1832	lc / h
Non-weaving vehicle index, INW	233	
Non-weaving lane change, LCNW	548	lc / h
Total lane changes, LCALL	2380	lc / h

Weaving and Non-Weaving Speeds

Weaving intensity factor, W	0.670	
Average weaving speed, SW	44.9	mi / h
Average non-weaving speed, SNW	43.6	mi / h

Average non-weaving speed, SNW
$43.6 \mathrm{mi} / \mathrm{h}$

	Weaving Segment Speed, Density, Level of Service and Capacity	
Weaving segment speed, S	44.0	mi / h
Weaving segment density, D	42.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LoS	E	
Weaving segment v/c ratio	0.956	
Weaving segment flow rate, v	5489	$\mathrm{veh} / \mathrm{h}$
Weaving segment capacity, cW	5742	$\mathrm{veh} / \mathrm{h}$

Limitations on Weaving Segments \qquad
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	5666	600	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	1962	c	
v/c ratio	Maximum	Analyzed		
	1.00	0.956	d	

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24 MORRIS COUNTY, NEW JERSEY

	＊	\rightarrow	－	\checkmark		4	4	\dagger	\％	＊	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中爯	\％${ }^{\text {F }}$	止年	禹	7	\％	中4	$\mathrm{Cl}^{\prime \prime}$	年年	車 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	103	1071	450	219	1354	660	188	966	778	224	522	42
Future Volume（veh／h）	103	1071	450	219	1354	660	188	966	778	224	522	42
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	134	1139	523	246	1574	825	221	1178	884	255	600	72
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	131	1271	1407	294	1282	695	242	1106	1104	300	833	100
Arrive On Green	0.07	0.35	0.35	0.09	0.37	0.37	0.14	0.31	0.31	0.09	0.26	0.26
Sat Flow，veh／h	1781	3582	2834	3456	3497	1535	1711	3526	2768	3483	3221	386
Grp Volume（v），veh／h	134	1139	523	246	1574	825	221	1178	884	255	333	339
Grp Sat Flow（s），veh／h／ln	1781	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1816
Q Serve（g＿s），s	11.0	45.1	17.1	10.5	55.0	55.0	19.1	47.1	42.3	10.8	25.4	25.5
Cycle Q Clear（g＿c），s	11.0	45.1	17.1	10.5	55.0	55.0	19.1	47.1	42.3	10.8	25.4	25.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.21
Lane Grp Cap（c），veh／h	131	1271	1407	294	1282	695	242	1106	1104	300	463	469
V／C Ratio（X）	1.03	0.90	0.37	0.84	1.23	1.19	0.91	1.06	0.80	0.85	0.72	0.72
Avail Cap（c＿a），veh／h	131	1271	1407	369	1282	695	262	1106	1104	325	463	469
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	69.5	45.8	23.3	67.6	47.5	41.0	63.5	51.5	39.8	67.6	50.7	50.7
Incr Delay（d2），s／veh	85.8	8.6	0.2	12.7	109.4	98.2	32.3	46.1	6.1	17.7	9.3	9.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	8.1	21.2	5.5	5.1	42.4	43.1	10.5	27.6	14.7	5.5	12.6	12.8
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	155.3	54.4	23.5	80.3	156.9	139.2	95.7	97.6	45.9	85.3	59.9	60.0
LnGrp LOS	F	D	C	F	F	F	F	F	D	F	E	E
Approach Vol，veh／h		1796			2645			2283			927	
Approach Delay，s／veh		52.9			144.3			77.4			66.9	
Approach LOS		D			F			E			E	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $G+Y+R c$ ），s	17.9	54.1	17.8	60.2	26.2	45.8	16.0	62.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0				
Max Green Setting（Gmax），s	14.0	46.0	16.0	50.0	23.0	37.0	11.0	55.0				
Max Q Clear Time（g＿c＋11），s	12.8	49.1	12.5	47.1	21.1	27.5	13.0	57.0				
Green Ext Time（p＿c），s	0.1	0.0	0.3	2.2	0.1	2.8	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			93.5									
HCM 6th LOS			F									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\hat{F}		${ }^{7} 1$	$\hat{\beta}$			俭	${ }^{\prime \prime}$	\% ${ }^{\text {\% }}$		
Traffic Volume (veh/h)	0	20	11	352	49	1	0	1932	415	566	590	35
Future Volume (veh/h)	0	20	11	352	49	1	0	1932	415	566	590	35
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	22	12	383	53	1	0	2100	451	615	641	38
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	2	2	2	2	2	0	2	2	2	2	2
Cap, veh/h	0	39	21	392	330	6	0	1898	1026	654	2575	153
Arrive On Green	0.00	0.03	0.03	0.11	0.18	0.18	0.00	0.53	0.53	0.19	0.76	0.76
Sat Flow, veh/h	0	1138	621	3456	1830	35	0	3647	1585	3456	3409	202
Grp Volume(v), veh/h	0	0	34	383	0	54	0	2100	451	615	334	345
Grp Sat Flow(s), veh/h/ln	0	0	1759	1728	0	1864	0	1777	1585	1728	1777	1834
Q Serve(g_s), s	0.0	0.0	2.7	15.5	0.0	3.4	0.0	74.8	19.6	24.6	7.9	7.9
Cycle Q Clear(g_c), s	0.0	0.0	2.7	15.5	0.0	3.4	0.0	74.8	19.6	24.6	7.9	7.9
Prop In Lane	0.00		0.35	1.00		0.02	0.00		1.00	1.00		0.11
Lane Grp Cap(c), veh/h	0	0	61	392	0	336	0	1898	1026	654	1342	1386
V/C Ratio(X)	0.00	0.00	0.56	0.98	0.00	0.16	0.00	1.11	0.44	0.94	0.25	0.25
Avail Cap(c_a), veh/h	0	0	226	392	0	511	0	1898	1026	654	1342	1386
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	0.0	66.5	61.9	0.0	48.4	0.0	32.6	12.2	56.0	5.2	5.2
Incr Delay (d2), s/veh	0.0	0.0	7.8	38.9	0.0	0.2	0.0	56.3	1.4	21.7	0.4	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	1.3	8.7	0.0	1.6	0.0	45.5	6.6	12.3	2.5	2.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	0.0	0.0	74.4	100.8	0.0	48.7	0.0	89.0	13.5	77.7	5.6	5.6
LnGrp LOS	A	A	E	F	A	D	A	F	B	E	A	A
Approach Vol, veh/h		34			437			2551			1294	
Approach Delay, s/veh		74.4			94.3			75.6			39.8	
Approach LOS		E			F			E			D	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	31.0	79.3	20.4	9.3		110.3		29.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.5	4.5	4.5	4.5		4.5		4.5				
Max Green Setting (Gmax), s	26.5	61.6	15.9	18.0		92.6		38.4				
Max Q Clear Time (g_c+l1), s	26.6	76.8	17.5	4.7		9.9		5.4				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.1		4.0		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			66.8									
HCM 6th LOS			E									

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:
Operational Analysis
Analyst: BMS
Agency/Co.: IH
Date Performed: 2020
Analysis Time Period: PM Peak
Freeway/Dir of Travel: NJ 24 EB at CR 510
Weaving Location: EB
Analysis Year: 2020
Description: NJ 24/CR 510 CD - Alt 3
Inputs \qquad

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length

Freeway
One-Sided
3 ln
600 ft
$65 \mathrm{mi} / \mathrm{h}$
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Level
0.00
0.00
\%
mi

Conversion to pc / h Under Base Conditions \qquad
Volume Components

Volume, V	2531	307	764	219	$\mathrm{veh} / \mathrm{h}$
Peak hour factor, PHF	0.90	0.90	0.90	0.90	
Peak 15-min volume, v15	703	85	212	61	
Trucks and buses	5	5	5	0	$\%$
Recreational vehicles	0	0	0	0	\%
Trucks and buses PCE, ET	1.5	1.5	1.5	1.5	
Recreational vehicle PCE, ER	1.2	1.2	1.2	1.2	
Heavy vehicle adjustment, fHV	0.976	0.976	0.976	1.000	
Driver population adjustment, fP	1.00	1.00	1.00	1.00	
Flow rate, v	2883	350	870	243	pc / h

Volume ratio, VR
0.281

Configuration Characteristics

Number of maneuver lanes, NWL
Interchange density, ID
Minimum RF lane changes, LCRF

2
$1.0 \quad$ int/mi
$1 \quad \mathrm{lc} / \mathrm{pc}$

Minimum FR lane changes, LCFR	1	$\mathrm{lc} / \mathrm{pc}$
Minimum RR lane changes, LCRR	$\mathrm{lc} / \mathrm{pc}$	

Weaving and Non-Weaving Speeds \qquad

Weaving intensity factor, W	0.518	
Average weaving speed, SW	47.9	mi / h
Average non-weaving speed, SNW	49.3	mi / h

Weaving Segment Speed, Density, Level of Service and Capacity
Weaving segment speed, S $48.9 \mathrm{mi} / \mathrm{h}$
Weaving segment density, D 29.6 pc/mi/ln Level of service, LOS D Weaving segment v/c ratio 0.731
Weaving segment flow rate, v
4246 veh/h
Weaving segment capacity, cW
5807 veh/h
Limitations on Weaving Segments
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	5378	600	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	1984	c	
v/c ratio				
Maximum	Analyzed			
	1.00	0.731	d	

Notes:

a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F .
1 ${ }^{E}$ IH Engineers. P.C.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24 MORRIS COUNTY, NEW JERSEY

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 /}$	44	「	1	44	「＇	${ }^{1 /}$	44	「「「	7	中 ${ }^{\text {c }}$	
Traffic Volume（veh／h）	34	934	293	375	1200	143	209	324	544	357	786	148
Future Volume（veh／h）	34	934	293	375	1200	143	209	324	544	357	786	148
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	54	1015	419	481	1644	196	235	348	567	476	914	163
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	69	1144	679	538	1526	907	175	728	1002	539	787	140
Arrive On Green	0.04	0.32	0.32	0.16	0.44	0.44	0.10	0.21	0.21	0.15	0.26	0.26
Sat Flow，veh／h	1781	3582	1610	3456	3497	1535	1711	3526	2768	3483	3037	541
Grp Volume（v），veh／h	54	1015	419	481	1644	196	235	348	567	476	539	538
Grp Sat Flow（s），veh／h／ln	1781	1791	1610	1728	1749	1535	1711	1763	1384	1742	1791	1788
Q Serve（g＿s），s	4.4	39.5	29.8	20.0	64.0	8.8	15.0	12.8	24.1	19.6	38.0	38.0
Cycle Q Clear（g＿c），s	4.4	39.5	29.8	20.0	64.0	8.8	15.0	12.8	24.1	19.6	38.0	38.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.30
Lane Grp Cap（c），veh／h	69	1144	679	538	1526	907	175	728	1002	539	464	463
V／C Ratio（X）	0.78	0.89	0.62	0.89	1.08	0.22	1.34	0.48	0.57	0.88	1.16	1.16
Avail Cap（c＿a），veh／h	109	1144	679	636	1526	907	175	728	1002	688	464	463
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	69.9	47.4	33.2	60.7	41.4	14.1	65.9	51.3	37.5	60.7	54.4	54.4
Incr Delay（d2），s／veh	16.9	8.7	1.7	13.6	47.1	0.1	187.8	0.5	0.7	10.8	94.2	94.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	2.3	18.6	11.5	9.6	36.0	2.9	15.6	5.7	8.0	9.4	29.1	29.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	86.7	56.1	34.9	74.3	88.4	14.2	253.6	51.7	38.3	71.5	148.6	148.9
LnGrp LOS	F	E	C	E	F	B	F	D	D	E	F	F
Approach Vol，veh／h		1488			2321			1150			1553	
Approach Delay，s／veh		51.2			79.2			86.4			125.1	
Approach LOS		D			E			F			F	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $G+Y+R c$ ），s	27.7	37.3	27.8	53.9	20.0	45.0	10.7	71.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0				
Max Green Setting（Gmax），s	29.0	24.0	27.0	46.0	15.0	38.0	9.0	64.0				
Max Q Clear Time（g＿c＋l1），s	21.6	26.1	22.0	41.5	17.0	40.0	6.4	66.0				
Green Ext Time（p＿c），s	1.1	0.0	0.8	3.0	0.0	0.0	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			85.0									
HCM 6th LOS			F									

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \qquad
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
AM Peak
NJ 24 EB at CR 510
$\begin{array}{ll}\text { Analysis Year: } & 2020 \\ \text { Description: } & \text { NJ } 24 / C R 510 \text { CD - Alt } 4\end{array}$
Inputs \qquad
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
Nu 24/CR 510 CD - Alt 4

Segment Type	Freeway	
Weaving configuration	One-S	
Number of lanes, N	3	1 n
Weaving segment length, LS	600	ft
Freeway free-flow speed, FFS	65	mi/h
Minimum segment speed, SMIN	15	mi/h
Freeway maximum capacity, cIFL	2350	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Terrain type	Level	
Grade	0.00	\%
Length	0.00	mi

Configuration Characteristics

Number of maneuver lanes, NWL	2	1 n
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN		lc/h
Weaving lane changes, LCW		lc/h
Non-weaving vehicle index, INW		
Non-weaving lane change, LCNW		lc/h
Total lane changes, LCALL		lc/h

Weaving and Non-Weaving Speeds
Weaving intensity factor, W

```
Average weaving speed, SW
    mi/h
Average non-weaving speed, SNW mi/h
Weaving Segment Speed, Density, Level of Service and Capacity
```

\qquad

```
W-_\overline{Wing-_segment speed, S Speed, Density, Level of Service}
Weaving segment density, D pc/mi/ln
Level of service, LOS F
Weaving segment v/c ratio 1.050
Weaving segment flow rate, v veh/h
Weaving segment capacity, cW ve07 veh/h
Limitations on Weaving Segments
``` \(\qquad\)
```

$\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

|  | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

```

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
\begin{tabular}{ll}
Analyst: & VJS \\
Agency/Co.: & IH \\
Date Performed: & Feb 2020 \\
Analysis Time Period: & AM Peak \\
Freeway/Dir of Travel: & NJ 24 EB at CR 510 \\
Weaving Location: & EB \\
Analysis Year: & 2020 \\
Description: & NJ \(24 / C R 510\) CD - Alt 4, Weave 2
\end{tabular}

Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
NJ 24/CR 510 CD - Alt 4, Weave 2
\begin{tabular}{lll}
Segment Type & Freeway & \\
Weaving configuration & One-Sided & \\
Number of lanes, N & 3 & ln \\
Weaving segment length, LS & 900 & ft \\
Freeway free-flow speed, FFS & 65 & \(\mathrm{mi} / \mathrm{h}\) \\
Minimum segment speed, SMIN & 15 & \(\mathrm{mi} / \mathrm{h}\) \\
Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
Terrain type & & \\
Grade & 0.00 & \\
Length & 0.00 & mi
\end{tabular}

Configuration Characteristics
\begin{tabular}{lll}
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & \(\mathrm{lc} / \mathrm{pc}\) \\
Minimum RR lane changes, LCRR & & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum weaving lane changes, LCMIN & & \\
Weaving lane changes, LCW & 1938 & \(l \mathrm{lc} / \mathrm{h}\) \\
Non-weaving vehicle index, INW & 376 & \\
Non-weaving lane change, LCNW & 770 & \(l c / h\) \\
Total lane changes, LCALL & 2708 & \(l c / h\)
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.539
```

Average weaving speed, SW
47.5
mi/h
Average non-weaving speed, SNW 42.6 mi/h
Average non-weaving speed, SNW 42.6 mi/h

```


Limitations on Weaving Segments \(\qquad\)
\(\overline{\text { If }}\) limit reached, see note.
\begin{tabular}{lccc}
& Minimum & Maximum & Actual
\end{tabular} Note
Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to
 make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
 treated as isolated merge and diverge areas using the procedures of
 Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
 under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 个个 & 7 & \％\({ }^{*}\) & 个 4 & F & \％ & 个4 & 「「「 & \％\({ }^{1}\) & 中t & \\
\hline Traffic Volume（veh／h） & 103 & 1402 & 119 & 216 & 1354 & 660 & 188 & 966 & 1197 & 423 & 323 & 42 \\
\hline Future Volume（veh／h） & 103 & 1402 & 119 & 216 & 1354 & 660 & 188 & 966 & 1197 & 423 & 323 & 42 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\) ，veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1870 & 1885 & 1900 & 1870 & 1841 & 1811 & 1796 & 1856 & 1856 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 163 & 1524 & 170 & 277 & 1855 & 904 & 211 & 1039 & 1247 & 564 & 376 & 46 \\
\hline Peak Hour Factor & 0.63 & 0.92 & 0.70 & 0.78 & 0.73 & 0.73 & 0.89 & 0.93 & 0.96 & 0.75 & 0.86 & 0.91 \\
\hline Percent Heavy Veh，\％ & 2 & 1 & 0 & 2 & 4 & 6 & 7 & 3 & 3 & 1 & 1 & 1 \\
\hline Cap，veh／h & 109 & 1428 & 806 & 336 & 1521 & 940 & 174 & 575 & 720 & 620 & 769 & 93 \\
\hline Arrive On Green & 0.06 & 0.40 & 0.40 & 0.10 & 0.43 & 0.43 & 0.10 & 0.16 & 0.16 & 0.18 & 0.24 & 0.24 \\
\hline Sat Flow，veh／h & 1781 & 3582 & 1610 & 3456 & 3497 & 1535 & 1711 & 3526 & 2768 & 3483 & 3215 & 391 \\
\hline Grp Volume（v），veh／h & 163 & 1524 & 170 & 277 & 1855 & 904 & 211 & 1039 & 1247 & 564 & 208 & 214 \\
\hline Grp Sat Flow（s），veh／h／ln & 1781 & 1791 & 1610 & 1728 & 1749 & 1535 & 1711 & 1763 & 1384 & 1742 & 1791 & 1815 \\
\hline Q Serve（g＿s），s & 9.0 & 58.7 & 8.7 & 11.6 & 64.0 & 64.0 & 15.0 & 24.0 & 24.0 & 23.4 & 14.7 & 14.9 \\
\hline Cycle Q Clear（g＿c），s & 9.0 & 58.7 & 8.7 & 11.6 & 64.0 & 64.0 & 15.0 & 24.0 & 24.0 & 23.4 & 14.7 & 14.9 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.22 \\
\hline Lane Grp Cap（c），veh／h & 109 & 1428 & 806 & 336 & 1521 & 940 & 174 & 575 & 720 & 620 & 428 & 434 \\
\hline V／C Ratio（X） & 1.50 & 1.07 & 0.21 & 0.82 & 1.22 & 0.96 & 1.21 & 1.81 & 1.73 & 0.91 & 0.49 & 0.49 \\
\hline Avail Cap（c＿a），veh／h & 109 & 1428 & 806 & 634 & 1521 & 940 & 174 & 575 & 720 & 686 & 462 & 469 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 69.1 & 44.2 & 20.5 & 65.2 & 41.6 & 26.9 & 66.1 & 61.6 & 54.4 & 59.3 & 48.2 & 48.3 \\
\hline Incr Delay（d2），s／veh & 265.4 & 43.9 & 0.1 & 5.1 & 105.1 & 20.5 & 136.0 & 370.2 & 334.8 & 15.4 & 0.9 & 0.9 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 12.1 & 33.9 & 3.2 & 5.2 & 48.2 & 31.8 & 13.1 & 40.2 & 46.4 & 11.6 & 6.7 & 6.9 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrrr}
LnGrp Delay（d），s／veh & 334.5 & 88.2 & 20.6 & 70.3 & 146.7 & 47.4 & 202.1 & 431.8 & 389.3 & 74.7 & 49.1 & 49.2 \\
LnGrp LOS & F & F & C & E & F & D & F & F & F & E & D & D \\
\hline Approach Vol，veh／h & 1857 & & & 3036 & & & 2497 & & 986 \\
Approach Delay，slveh & & 103.6 & & & 110.1 & & 391.1 & & 63.8 \\
Approach LOS & F & & & F & & & F & & E
\end{tabular}
\begin{tabular}{lrrrrrrrr}
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration \((G+Y+R c)\) ，s & 31.2 & 31.0 & 19.3 & 65.7 & 20.0 & 42.2 & 14.0 & 71.0 \\
Change Period（Y＋Rc），s & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 \\
Max Green Setting（Gmax），s & 29.0 & 24.0 & 27.0 & 46.0 & 15.0 & 38.0 & 9.0 & 64.0 \\
Max Q Clear Time（g＿c＋11），s & 25.4 & 26.0 & 13.6 & 60.7 & 17.0 & 16.9 & 11.0 & 66.0 \\
Green Ext Time（p＿C），s & 0.8 & 0.0 & 0.7 & 0.0 & 0.0 & 2.3 & 0.0 & 0.0
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 187.0
HCM 6th LOS
F

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
PM Peak
NJ 24 EB at CR 510
EB
Description: NJ \(24 / C R 510\) CD - Alt 4
Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
2020
\begin{tabular}{lll}
Segment Type & Freeway & \\
Weaving configuration & One-Sided & \\
Number of lanes, N & 3 & ln \\
Weaving segment length, LS & 600 & ft \\
Freeway free-flow speed, FFS & 65 & \(\mathrm{mi} / \mathrm{h}\) \\
Minimum segment speed, SMIN & 15 & \(\mathrm{mi} / \mathrm{h}\) \\
Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
Terrain type & & \\
Grade & 0.00 & \\
Length & 0.00 & mi
\end{tabular}

Configuration Characteristics
\begin{tabular}{lll}
\hline Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & lc/pc \\
Minimum RR lane changes, LCRR & & lc/pc \\
Minimum weaving lane changes, LCMIN & 1268 & \\
Weaving lane changes, LCW & 1374 & lc/h \\
Non-weaving vehicle index, INW & 200 & \\
Non-weaving lane change, LCNW & 434 & lc/h \\
Total lane changes, LCALL & 1808 & \(l c / h\)
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.540
```

Average weaving speed, SW
mi/h

```
Weaving Segment Speed, Density, Level of Service and Capacity
\(\qquad\)
\begin{tabular}{lcc}
Weaving segment speed, S & 48.2 & \(\mathrm{mi} / \mathrm{h}\) \\
Weaving segment density, D & 31.8 & \(\mathrm{pc} / \mathrm{mi}\) \\
Level of service, LOS & D & \\
Weaving segment v/c ratio & 0.771 & \\
Weaving segment flow rate, v & 4490 & \(\mathrm{veh} / \mathrm{h}\)
\end{tabular}
Weaving segment capacity, cW

5821
veh/h

Limitations on Weaving Segments \(\qquad\)
\(\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}\) reached, see note.
\begin{tabular}{lccc}
& Minimum & Maximum & Actual
\end{tabular} Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
\begin{tabular}{ll}
Analyst: & VJS \\
Agency/Co.: & IH \\
Date Performed: & Feb 2020 \\
Analysis Time Period: & PM Peak \\
Freeway/Dir of Travel: & NJ 24 EB at CR 510 \\
Weaving Location: & EB \\
Analysis Year: & 2020 \\
Description: & NJ \(24 / C R 510\) CD - Alt 4, Weave 2
\end{tabular}

Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
NJ 24/CR 510 CD - Alt 4, Weave 2
\begin{tabular}{lll}
Segment Type & Freeway & \\
Weaving configuration & One-Sided & \\
Number of lanes, N & 3 & ln \\
Weaving segment length, LS & 900 & ft \\
Freeway free-flow speed, FFS & 65 & \(\mathrm{mi} / \mathrm{h}\) \\
Minimum segment speed, SMIN & 15 & \(\mathrm{mi} / \mathrm{h}\) \\
Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
Terrain type & & \\
Grade & 0.00 & \\
Length & 0.00 & mi
\end{tabular}

Configuration Characteristics
\begin{tabular}{lll}
\hline Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & lc/pc \\
Minimum RR lane changes, LCRR & & lc/pc \\
Minimum weaving lane changes, LCMIN & 1834 & \\
Weaving lane changes, LCW & 1984 & lc/h \\
Non-weaving vehicle index, INW & 309 & \\
Non-weaving lane change, LCNW & 618 & lc/h \\
Total lane changes, LCALL & 2602 & lc/h
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, w 0.522
```

Average weaving speed, SW


Limitations on Weaving Segments $\qquad$
If limit reached, see note.

|  | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

# Year 2040 alternatives analysis volume worksheets and Synchro reports 

1.1 IH Engineers. P.C.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24
MORRIS COUNTY, NEWJERSEY

ALt. 1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 /}$	44	「「	${ }^{7} 1$	中4	「	${ }^{7}$	44	「「゙	7\％	虫	
Traffic Volume（veh／h）	38	1037	325	624	1332	159	232	360	604	396	872	164
Future Volume（veh／h）	38	1037	325	624	1332	159	232	360	604	396	872	164
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	60	1127	464	800	1825	218	261	387	629	528	1014	180
Peak Hour Factor	0.63	0.92	0.70	0.78	0.73	0.73	0.89	0.93	0.96	0.75	0.86	0.91
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	77	836	1058	714	1389	869	240	813	1210	590	790	140
Arrive On Green	0.04	0.23	0.23	0.21	0.40	0.40	0.23	0.38	0.38	0.17	0.26	0.26
Sat Flow，veh／h	1781	3582	2834	3456	3497	1535	1711	3526	2768	3483	3040	539
Grp Volume（v），veh／h	60	1127	464	800	1825	218	261	387	629	528	597	597
Grp Sat Flow（s），veh／h／ln	1781	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1788
Q Serve（g＿s），s	5.0	35.0	18.4	31.0	59.6	10.8	21.0	12.4	24.7	22.3	39.0	39.0
Cycle Q Clear（g＿c），s	5.0	35.0	18.4	31.0	59.6	10.8	21.0	12.4	24.7	22.3	39.0	39.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.30
Lane Grp Cap（c），veh／h	77	836	1058	714	1389	869	240	813	1210	590	466	465
V／C Ratio（X）	0.78	1.35	0.44	1.12	1.31	0.25	1.09	0.48	0.52	0.89	1.28	1.28
Avail Cap（c＿a），veh／h	107	836	1058	714	1389	869	240	813	1210	720	466	465
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	0.36	0.36	0.36	1.00	1.00	1.00
Uniform Delay（d），s／veh	71.1	57.5	35.2	59.5	45.2	16.4	57.5	39.3	24.5	61.0	55.5	55.5
Incr Delay（d2），s／veh	21.8	164.7	0.3	71.8	146.6	0.1	61.8	0.7	0.6	12.0	142.3	143.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.7	34.7	6.2	20.3	52.9	3.7	12.5	5.0	6.4	10.8	35.8	36.0

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	92.9	222.2	35.5	131.3	191.9	16.6	119.3	40.0	25.1	73.0	197.8
LnGrp LOS	F	F	D	F	F	B	F	D	C	E	F
Approach Vol，veh／h		1651			2843			1277			
Approach Delay，s／veh	165.1			161.4		48.9	1722				
Approach LOS	F			F			D	160.0			


Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	30.4	41.6	36.0	42.0	26.0	46.0	11.4	66.6
Change Period（Y＋Rc），s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0
Max Green Setting（Gmax），s	31.0	29.0	31.0	35.0	21.0	39.0	9.0	57.0
Max Q Clear Time（g＿c＋I1），s	24.3	26.7	33.0	37.0	23.0	41.0	7.0	61.6
Green Ext Time（p＿c），s	1.2	1.2	0.0	0.0	0.0	0.0	0.0	0.0

## Intersection Summary

HCM 6th Ctrl Delay 142.7

HCM 6th LOS F

HCM 6th Signalized Intersection Summary
5：Park Avenue
02／04／2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{\rightharpoonup}{1}$		${ }^{1+1}$	$\hat{}$			个个	「	${ }^{1+1}$	性	
Traffic Volume（veh／h）	0	18	16	1113	200	70	0	1125	102	124	1698	18
Future Volume（veh／h）	0	18	16	1113	200	70	0	1125	102	124	1698	18
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.85	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	0	20	17	1210	217	76	0	1223	111	135	1846	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	2	2	2	2	2	0	2	2	2	2	2
Cap，veh／h	0	26	22	945	345	121	0	1802	1237	180	2122	23
Arrive On Green	0.00	0.03	0.03	0.27	0.27	0.27	0.00	0.51	0.51	0.10	1.00	1.00
Sat Flow，veh／h	0	934	794	3456	1260	441	0	3647	1585	3456	3601	39
Grp Volume（v），veh／h	0	0	37	1210	0	293	0	1223	111	135	909	957
Grp Sat Flow（s），veh／h／ln	0	0	1727	1728	0	1702	0	1777	1585	1728	1777	1863
Q Serve（g＿s），s	0.0	0.0	3.2	41.0	0.0	22.7	0.0	38.8	2.5	5.7	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	0.0	3.2	41.0	0.0	22.7	0.0	38.8	2.5	5.7	0.0	0.0
Prop In Lane	0.00		0.46	1.00		0.26	0.00		1.00	1.00		0.02
Lane Grp Cap（c），veh／h	0	0	48	945	0	465	0	1802	1237	180	1047	1098
V／C Ratio（X）	0.00	0.00	0.78	1.28	0.00	0.63	0.00	0.68	0.09	0.75	0.87	0.87
Avail Cap（c＿a），veh／h	0	0	207	945	0	465	0	1802	1237	290	1047	1098
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter（I）	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.09	0.09	0.09
Uniform Delay（d），s／veh	0.0	0.0	72.5	54.5	0.0	47.8	0.0	27.8	3.9	66.2	0.0	0.0
Incr Delay（d2），s／veh	0.0	0.0	23.2	134.6	0.0	2.7	0.0	2.1	0.1	0.6	1.0	1.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％oile BackOfQ（50\％），veh／ln	0.0	0.0	1.7	34.9	0.0	9.7	0.0	16.8	2.1	2.4	0.3	0.3

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	0.0	0.0	95.6	189.1	0.0	50.6	0.0	29.9	4.0	66.8	1.0	1.0
LnGrp LOS	A	A	F	F	A	D	A	C	A	E	A	A
Approach Vol，veh／h		37			1503			1334			2001	
Approach Delay，s／veh		95.6			162.1			27.7		5.4		
Approach LOS		F			F			C			A	


Timer－Assigned Phs	1	2	4	6	8
Phs Duration $(G+Y+R c)$ ，s	12.3	82.1	8.6	94.4	47.0
Change Period（Y＋Rc），s	4.5	6.0	4.5	6.0	6.0
Max Green Setting（Gmax），s	12.6	57.4	18.0	74.5	41.0
Max Q Clear Time（g＿c＋11），s	7.7	40.8	5.2	2.0	43.0
Green Ext Time（p＿C），s	0.1	8.4	0.1	23.0	0.0

Intersection Summary
HCM 6th Ctrl Delay 60.5
HCM 6th LOS

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis $\qquad$

Analyst:	VJS
Agency/Co.:	IH
Date Performed:	Feb 2020
Analysis Time Period:	AM Peak - Alt 1
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2040
Description:	NJ 24/CR 510 CD

Inputs $\qquad$

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Freeway
One-Sided
3 In

600 ft
65 mi/h
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Grade
Level

Length
0.00
\%
0.00 mi


Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	lc/pc
Minimum FR lane changes, LCFR	1	lc/pc
Minimum RR lane changes, LCRR		lc/pc
Minimum weaving lane changes, LCMIN	1001	lc/h
Weaving lane changes, LCW	1107	lc/h
Non-weaving vehicle index, INW	268	
Non-weaving lane change, LCNW	667	lc/h
Total lane changes, LCALL	1774	lc/h

Weaving and Non-Weaving Speeds
Weaving intensity factor, w 0.532

```
Average weaving speed, SW
47.6
 mi/h
Average non-weaving speed, SNW 49.1 mi/h
```



Limitations on Weaving Segments $\qquad$
$\overline{\text { If }}$ limit reached, see note.

|  | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

HCM 6th Signalized Intersection Summary
3：Park Avenue \＆Columbia Turnpike
02／04／2020

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个4	F＇7	\％${ }^{1+1}$	个4	「	\％	个4	「「＇	＊＊	中t	
Traffic Volume（veh／h）	114	1557	132	370	1502	733	209	1073	1330	470	359	47
Future Volume（veh／h）	114	1557	132	370	1502	733	209	1073	1330	470	359	47
Initial Q（Qb），veh	0	0	0	0	，	0	0	，	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1885	1900	1870	1841	1811	1796	1856	1856	1885	1885	1885
Adj Flow Rate，veh／h	148	1656	153	416	1747	916	246	1309	1511	534	413	81
Peak Hour Factor	0.77	0.94	0.86	0.89	0.86	0.80	0.85	0.82	0.88	0.88	0.87	0.58
Percent Heavy Veh，\％	2	1	0	2	4	6	7	3	3	1	1	1
Cap，veh／h	163	1254	1447	173	1078	691	275	911	853	493	715	139
Arrive On Green	0.09	0.35	0.35	0.05	0.31	0.31	0.05	0.09	0.09	0.14	0.24	0.24
Sat Flow，veh／h	1781	3582	2834	3456	3497	1535	1711	3526	2768	3483	2990	582
Grp Volume（v），veh／h	148	1656	153	416	1747	916	246	1309	1511	534	246	248
Grp Sat Flow（ s ，veh／h／ln	1781	1791	1417	1728	1749	1535	1711	1763	1384	1742	1791	1780
Q Serve（g＿s），s	9.9	42.0	3.4	6.0	37.0	37.0	17.2	31.0	31.0	17.0	14.5	14.8
Cycle Q Clear（g＿c），s	9.9	42.0	3.4	6.0	37.0	37.0	17.2	31.0	31.0	17.0	14.5	14.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.33
Lane Grp Cap（c），veh／h	163	1254	1447	173	1078	691	275	911	853	493	429	426
V／C Ratio（X）	0.91	1.32	0.11	2.41	1.62	1.33	0.89	1.44	1.77	1.08	0.57	0.58
Avail Cap（c＿a），veh／h	163	1254	1447	173	1078	691	299	911	853	493	429	426
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	0.09	0.09	0.09	1.00	1.00	1.00
Uniform Delay（d），s／veh	54.0	39.0	15.2	57.0	41.5	33.0	55.8	54.9	50.5	51.5	40.3	40.3
Incr Delay（d2），s／veh	44.4	150.1	0.0	650.8	283.3	156.7	3.4	197.3	347.2	64.5	5.5	5.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	6.4	43.8	1.0	18.1	57.5	48.3	8.2	39.6	54.1	11.7	7.0	7.1

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	98.3	189.1	15.2	707.8	324.8	189.7	59.2	252.2	397.7	116.0	45.8	46.0
LnGrp LOS	F	F	B	F	F	F	E	F	F	F	D	D
Approach Vol，veh／h		1957			3079			3066		1028		
Approach Delay，s／veh		168.7			336.4			308.4		82.3		
Approach LOS	F			F			$F$		F			


Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration $(G+Y+R c)$ ，s	22.0	38.0	11.0	49.0	24.3	35.7	16.0	44.0
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	5.0	7.0	5.0	7.0	5.0	7.0	5.0	7.0
Max Green Setting（Gmax），s	17.0	31.0	6.0	42.0	21.0	27.0	11.0	37.0
Max Q Clear Time（g＿c＋11），s	19.0	33.0	8.0	44.0	19.2	16.8	11.9	39.0
Green Ext Time（p＿C），s	0.0	0.0	0.0	0.0	0.1	2.1	0.0	0.0

## Intersection Summary

HCM 6th Ctrl Delay 262.4
HCM 6th LOS
F

HCM 6th Signalized Intersection Summary
5: Park Avenue \& Alt 1 Ramp

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$		${ }^{17}$	$\hat{1}$			个4	F'	${ }^{1+1}$	性	
Traffic Volume (veh/h)	0	17	17	605	109	38	0	2571	278	278	584	39
Future Volume (veh/h)	0	17	17	605	109	38	0	2571	278	278	584	39
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	1870	0	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	18	18	658	118	41	0	2795	302	302	635	42
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	2	2	2	2	2	0	2	2	2	2	2
Cap, veh/h	0	25	25	518	199	69	0	1955	1110	331	2312	153
Arrive On Green	0.00	0.03	0.03	0.15	0.15	0.15	0.00	0.55	0.55	0.10	0.68	0.68
Sat Flow, veh/h	0	858	858	3456	1326	461	0	3647	1585	3456	3383	224
Grp Volume(v), veh/h	0	0	36	658	0	159	0	2795	302	302	333	344
Grp Sat Flow(s),veh/h/ln	0	0	1716	1728	0	1787	0	1777	1585	1728	1777	1830
Q Serve(g_s), s	0.0	0.0	2.5	18.0	0.0	10.0	0.0	66.0	8.5	10.4	8.8	8.8
Cycle Q Clear(g_c), s	0.0	0.0	2.5	18.0	0.0	10.0	0.0	66.0	8.5	10.4	8.8	8.8
Prop In Lane	0.00		0.50	1.00		0.26	0.00		1.00	1.00		0.12
Lane Grp Cap(c), veh/h	0	0	50	518	0	268	0	1955	1110	331	1214	1251
V/C Ratio(X)	0.00	0.00	0.72	1.27	0.00	0.59	0.00	1.43	0.27	0.91	0.27	0.27
Avail Cap(c_a), veh/h	0	0	257	518	0	268	0	1955	1110	331	1214	1251
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.09	0.09	0.09
Uniform Delay (d), s/veh	0.0	0.0	57.8	51.0	0.0	47.6	0.0	27.0	6.7	53.7	7.4	7.4
Incr Delay (d2), s/veh	0.0	0.0	17.6	135.8	0.0	3.5	0.0	196.5	0.6	4.0	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	1.3	17.3	0.0	4.5	0.0	79.2	4.6	4.5	2.8	2.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	75.4	186.8	0.0	51.1	0.0	223.5	7.3	57.7	7.5	7.5
LnGrp LOS	A	A	E	F	A	D	A	F	A	E	A	A
Approach Vol, veh/h		36			817			3097			979	
Approach Delay, s/veh		75.4			160.4			202.4			23.0	
Approach LOS		E			F			F			C	


Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	16.0	72.0	8.0	88.0	24.0
Change Period (Y+Rc), s	4.5	6.0	4.5	6.0	6.0
Max Green Setting (Gmax), s	11.5	51.5	18.0	67.5	18.0
Max Q Clear Time (g_c+11), s	12.4	68.0	4.5	10.8	20.0
Green Ext Time (p_c), s	0.0	0.0	0.1	4.0	0.0

## Intersection Summary

HCM 6th Ctrl Delay 158.9
HCM 6th LOS
F

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis $\qquad$

Analyst:	VJS
Agency/Co.:	IH
Date Performed:	Feb 2020
Analysis Time Period:	PM Peak - Alt 1
Freeway/Dir of Travel:	NJ 24 EB at CR 510
Weaving Location:	EB
Analysis Year:	2040
Description:	NJ 24/CR 510 CD

Inputs $\qquad$

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Freeway
One-Sided
3 In

600 ft
65 mi/h
$15 \mathrm{mi} / \mathrm{h}$
$2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Grade
Level

Length
0.00
\%
0.00 mi


Configuration Characteristics

Number of maneuver lanes, NWL	2	ln
Interchange density, ID	1.0	int/mi
Minimum RF lane changes, LCRF	1	$l \mathrm{c} / \mathrm{pc}$
Minimum FR lane changes, LCFR	1	$\mathrm{lc} / \mathrm{pc}$
Minimum RR lane changes, LCRR		$l \mathrm{c} / \mathrm{pc}$
Minimum weaving lane changes, LCMIN	861	
Weaving lane changes, LCW	967	$l c / h$
Non-weaving vehicle index, INW	206	
Non-weaving lane change, LCNW	455	
Total lane changes, LCALL	1422	$l c / h$

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.446

```
Average weaving speed, SW
```



```
Limitations on Weaving Segments
``` \(\qquad\)
```

If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	4541	600	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	2049	c	
v/cratio			Maximum	Analyzed

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

```
E
IH Engineers. p.c.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24
MORRIS COUNTY, NEW JERSEY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & 「「 & 71 & 44 & 「 & \({ }^{1 /}\) & 44 & 「「で & 7\％ & 㻢 & \\
\hline Traffic Volume（veh／h） & 0 & 1075 & 325 & 624 & 1332 & 159 & 232 & 397 & 603 & 396 & 872 & 164 \\
\hline Future Volume（veh／h） & 0 & 1075 & 325 & 624 & 1332 & 159 & 232 & 397 & 603 & 396 & 872 & 164 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1885 & 1900 & 1870 & 1841 & 1811 & 1796 & 1856 & 1856 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 0 & 1168 & 464 & 800 & 1825 & 218 & 261 & 427 & 628 & 528 & 1014 & 180 \\
\hline Peak Hour Factor & 0.63 & 0.92 & 0.70 & 0.78 & 0.73 & 0.73 & 0.89 & 0.93 & 0.96 & 0.75 & 0.86 & 0.91 \\
\hline Percent Heavy Veh，\％ & 0 & 1 & 0 & 2 & 4 & 6 & 7 & 3 & 3 & 1 & 1 & 1 \\
\hline Cap，veh／h & 0 & 812 & 1058 & 714 & 1632 & 976 & 251 & 836 & 1228 & 590 & 790 & 140 \\
\hline Arrive On Green & 0.00 & 0.23 & 0.23 & 0.21 & 0.47 & 0.47 & 0.24 & 0.40 & 0.40 & 0.17 & 0.26 & 0.26 \\
\hline Sat Flow，veh／h & 0 & 3676 & 2834 & 3456 & 3497 & 1535 & 1711 & 3526 & 2768 & 3483 & 3040 & 539 \\
\hline Grp Volume（v），veh／h & 0 & 1168 & 464 & 800 & 1825 & 218 & 261 & 427 & 628 & 528 & 597 & 597 \\
\hline Grp Sat Flow（s），veh／h／ln & 0 & 1791 & 1417 & 1728 & 1749 & 1535 & 1711 & 1763 & 1384 & 1742 & 1791 & 1788 \\
\hline Q Serve（g＿s），s & 0.0 & 34.0 & 18.4 & 31.0 & 70.0 & 9.0 & 22.0 & 13.8 & 24.1 & 22.3 & 39.0 & 39.0 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 34.0 & 18.4 & 31.0 & 70.0 & 9.0 & 22.0 & 13.8 & 24.1 & 22.3 & 39.0 & 39.0 \\
\hline Prop In Lane & 0.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.30 \\
\hline Lane Grp Cap（c），veh／h & 0 & 812 & 1058 & 714 & 1632 & 976 & 251 & 836 & 1228 & 590 & 466 & 465 \\
\hline V／C Ratio（X） & 0.00 & 1.44 & 0.44 & 1.12 & 1.12 & 0.22 & 1.04 & 0.51 & 0.51 & 0.89 & 1.28 & 1.28 \\
\hline Avail Cap（c＿a），veh／h & 0 & 812 & 1058 & 714 & 1632 & 976 & 251 & 836 & 1228 & 720 & 466 & 465 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.67 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.30 & 0.30 & 0.30 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 0.0 & 58.0 & 35.2 & 59.5 & 40.0 & 11.6 & 56.6 & 38.7 & 23.7 & 61.0 & 55.5 & 55.5 \\
\hline Incr Delay（d2），s／veh & 0.0 & 204.4 & 0.3 & 71.8 & 62.1 & 0.1 & 42.1 & 0.7 & 0.5 & 12.0 & 142.3 & 143.7 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.0 & 38.2 & 6.2 & 20.3 & 42.3 & 2.9 & 11.7 & 5.4 & 6.2 & 10.8 & 35.8 & 36.0 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrrr} 
LnGrp Delay（d），s／veh & 0.0 & 262.4 & 35.5 & 131.3 & 102.1 & 11.7 & 98.7 & 39.4 & 24.1 & 73.0 & 197.8 & 199.2 \\
LnGrp LOS & A & F & D & F & F & B & F & D & C & E & F & F \\
\hline Approach Vol，veh／h & 1632 & & & 2843 & & 1316 & & 1722 \\
Approach Delay，s／veh & 197.9 & & & 103.4 & & & 43.9 & & 160.0 \\
Approach LOS & F & & & F & & & D & F
\end{tabular}
\begin{tabular}{lrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 30.4 & 42.6 & 36.0 & 41.0 & 27.0 & 46.0 & 77.0 \\
Change Period（Y＋Rc），s & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & 7.0 \\
Max Green Setting（Gmax），s & 31.0 & 30.0 & 31.0 & 34.0 & 22.0 & 39.0 & 70.0 \\
Max Q Clear Time（g＿c＋11），s & 24.3 & 26.1 & 33.0 & 36.0 & 24.0 & 41.0 & 72.0 \\
Green Ext Time（p＿c），s & 1.2 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 126.5
HCM 6th LOS F

HCM 6th Signalized Intersection Summary
5：Park Avenue \＆Alt 2 Ramp
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & \％\({ }^{1 / 1}\) & \(\hat{\beta}\) & & & 个 \(\uparrow\) & 「 & \({ }^{7} 1\) & 性 & \\
\hline Traffic Volume（veh／h） & 0 & 17 & 15 & 1113 & 200 & 108 & 0 & 1125 & 102 & 124 & 1698 & 18 \\
\hline Future Volume（veh／h） & 0 & 17 & 15 & 1113 & 200 & 108 & 0 & 1125 & 102 & 124 & 1698 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 1870 & 1870 & 1870 & 1870 & 1870 \\
\hline Adj Flow Rate，veh／h & 0 & 18 & 16 & 1210 & 217 & 117 & 0 & 1223 & 111 & 135 & 1846 & 20 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh，\％ & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 & 2 \\
\hline Cap，veh／h & 0 & 23 & 20 & 991 & 328 & 177 & 0 & 1763 & 1241 & 180 & 2082 & 23 \\
\hline Arrive On Green & 0.00 & 0.03 & 0.03 & 0.29 & 0.29 & 0.29 & 0.00 & 0.50 & 0.50 & 0.10 & 1.00 & 1.00 \\
\hline Sat Flow，veh／h & 0 & 913 & 811 & 3456 & 1143 & 616 & 0 & 3647 & 1585 & 3456 & 3601 & 39 \\
\hline Grp Volume（v），veh／h & 0 & 0 & 34 & 1210 & 0 & 334 & 0 & 1223 & 111 & 135 & 909 & 957 \\
\hline Grp Sat Flow（s），veh／h／ln & 0 & 0 & 1724 & 1728 & 0 & 1759 & 0 & 1777 & 1585 & 1728 & 1777 & 1863 \\
\hline Q Serve（g＿s），s & 0.0 & 0.0 & 2.9 & 43.0 & 0.0 & 25.1 & 0.0 & 39.7 & 2.5 & 5.7 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 0.0 & 2.9 & 43.0 & 0.0 & 25.1 & 0.0 & 39.7 & 2.5 & 5.7 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.00 & & 0.47 & 1.00 & & 0.35 & 0.00 & & 1.00 & 1.00 & & 0.02 \\
\hline Lane Grp Cap（c），veh／h & 0 & 0 & 44 & 991 & 0 & 504 & 0 & 1763 & 1241 & 180 & 1027 & 1077 \\
\hline V／C Ratio（X） & 0.00 & 0.00 & 0.78 & 1.22 & 0.00 & 0.66 & 0.00 & 0.69 & 0.09 & 0.75 & 0.89 & 0.89 \\
\hline Avail Cap（c＿a），veh／h & 0 & 0 & 207 & 991 & 0 & 504 & 0 & 1763 & 1241 & 290 & 1027 & 1077 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 2.00 \\
\hline Upstream Filter（l） & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.09 & 0.09 & 0.09 \\
\hline Uniform Delay（d），s／veh & 0.0 & 0.0 & 72.7 & 53.5 & 0.0 & 47.1 & 0.0 & 29.0 & 3.8 & 66.2 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.0 & 0.0 & 25.3 & 108.8 & 0.0 & 3.2 & 0.0 & 2.3 & 0.1 & 0.6 & 1.2 & 1.2 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（ \(50 \%\) ），veh／ln & 0.0 & 0.0 & 1.6 & 33.0 & 0.0 & 11.1 & 0.0 & 17.2 & 2.2 & 2.4 & 0.3 & 0.3 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 0.0 & 0.0 & 98.0 & 162.3 & 0.0 & 50.3 & 0.0 & 31.3 & 4.0 & 66.8 & 1.2 & 1.2 \\
\hline LnGrp LOS & A & A & F & F & A & D & A & C & A & E & A & A \\
\hline Approach Vol，veh／h & & 34 & & & 1544 & & & 1334 & & & 2001 & \\
\hline Approach Delay，s／veh & & 98.0 & & & 138.1 & & & 29.0 & & & 5.6 & \\
\hline Approach LOS & & F & & & F & & & C & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Timer－Assigned Phs & 1 & 2 & 4 & 6 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 12.3 & 80.4 & 8.3 & 92.7 & 49.0 \\
Change Period（Y＋Rc），s & 4.5 & 6.0 & 4.5 & 6.0 & 6.0 \\
Max Green Setting（Gmax），s & 12.6 & 55.4 & 18.0 & 72.5 & 43.0 \\
Max Q Clear Time（g＿c＋11），s & 7.7 & 41.7 & 4.9 & 2.0 & 45.0 \\
Green Ext Time（p＿c），s & 0.1 & 7.5 & 0.1 & 22.9 & 0.0
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 54.2
HCM 6th LOS D
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 105.7 & & & \\
\hline Intersection LOS & F & & & \\
\hline Approach & EB & WB & SB & SW \\
\hline Entry Lanes & 1 & 2 & 1 & 0 \\
\hline Conflicting Circle Lanes & 2 & 2 & 2 & 2 \\
\hline Adj Approach Flow, veh/h & 265 & 2271 & 176 & 0 \\
\hline Demand Flow Rate, veh/h & 270 & 2316 & 180 & 0 \\
\hline Vehicles Circulating, veh/h & 138 & 0 & 1533 & 1533 \\
\hline Vehicles Exiting, veh/h & 1575 & 408 & 0 & 783 \\
\hline Follow-Up Headway, s & 3.186 & 3.186 & 3.186 & 3.186 \\
\hline Ped Vol Crossing Leg, \#/h & 0 & 0 & 0 & 0 \\
\hline Ped Cap Adj & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline Approach Delay, s/veh & 6.2 & 124.0 & 19.9 & 0.0 \\
\hline Approach LOS & A & F & C & . \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & Left & Left & Right & Left \\
\hline Designated Moves & LT & LT & R & LR \\
Assumed Moves & LT & LT & R & LR \\
RT Channelized & 1.000 & 0.662 & 0.338 & 1.000 \\
\hline Lane Util & 4.113 & 4.293 & 4.113 & 4.113 \\
\hline Critical Headway, s & 270 & 1533 & 783 & 180 \\
Entry Flow, veh/h & 1026 & 1130 & 1130 & 386 \\
Cap Entry Lane, veh/h & 0.980 & 1503 & 0.981 & 0.978 \\
Entry HV Adj Factor & 265 & 1108 & 1108 & 176 \\
Flow Entry, veh/h & 1006 & 1.357 & 0.693 & 378 \\
Cap Entry, veh/h & 0.263 & 180.3 & 13.7 & 0.466 \\
VIC Ratio & F & B & 19.9 \\
Control Delay, s/veh & 6.2 & 59 & 6 & C \\
LOS & A & & 2
\end{tabular}

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
AM Peak
NJ 24 EB at CR 510

2040
Description: NJ \(24 / C R 510\) CD - ALT 2
Inputs \(\qquad\)

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Freeway
One-Sided
\(3 \quad \ln\)

1050 ft
\(65 \mathrm{mi} / \mathrm{h}\)
\(15 \mathrm{mi} / \mathrm{h}\)
\(2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}\)

Grade
Level

Length
0.00
\%
0.00 mi


Configuration Characteristics
\begin{tabular}{lll} 
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & lc/pc \\
Minimum RR lane changes, LCRR & & lc/pc \\
Minimum weaving lane changes, LCMIN & & lc/h \\
Weaving lane changes, LCW & lc/h \\
Non-weaving vehicle index, INW & & \\
Non-weaving lane change, LCNW & & lc/h \\
Total lane changes, LCALL
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W
```

Average weaving speed, SW
mi/h
Average non-weaving speed, SNW
mi/h
Weaving Segment Speed, Density, Level of Service and Capacity

```
\(\qquad\)
```

Weaving segment speed, S		mi / h
Weaving segment density, D	$\mathrm{p} / \mathrm{mi} / \mathrm{ln}$	
Level of service, Los		
Weaving segment v/c ratio	1.051	
Weaving segment flow rate, v	6174	$\mathrm{veh} / \mathrm{h}$
Weaving segment capacity, cW	5874	$\mathrm{veh} / \mathrm{h}$

Limitations on Weaving Segments

``` \(\qquad\)
```

$\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	5535	1050	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	2007	c	
v/cratio			Maximum	Analyzed

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

```
IH Engineers. P.C.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24
MORRIS COUNTY, NEW JERSEY
\# -

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & 「「で & 7 & 44 & 「＇ & \({ }^{7}\) & 中4 & 「「゙ & 71 & 㻢 & \\
\hline Traffic Volume（veh／h） & 0 & 1671 & 132 & 371 & 1503 & 733 & 209 & 1187 & 1329 & 470 & 359 & 47 \\
\hline Future Volume（veh／h） & 0 & 1671 & 132 & 371 & 1503 & 733 & 209 & 1187 & 1329 & 470 & 359 & 47 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1885 & 1900 & 1870 & 1841 & 1811 & 1796 & 1856 & 1856 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 0 & 1778 & 153 & 417 & 1748 & 916 & 246 & 1448 & 1510 & 534 & 413 & 81 \\
\hline Peak Hour Factor & 0.77 & 0.94 & 0.86 & 0.89 & 0.86 & 0.80 & 0.85 & 0.82 & 0.88 & 0.88 & 0.87 & 0.58 \\
\hline Percent Heavy Veh，\％ & 0 & 1 & 0 & 2 & 4 & 6 & 7 & 3 & 3 & 1 & 1 & 1 \\
\hline Cap，veh／h & 0 & 1323 & 1498 & 159 & 1587 & 850 & 272 & 1058 & 958 & 348 & 720 & 140 \\
\hline Arrive On Green & 0.00 & 0.37 & 0.37 & 0.05 & 0.45 & 0.45 & 0.05 & 0.10 & 0.10 & 0.10 & 0.24 & 0.24 \\
\hline Sat Flow，veh／h & 0 & 3676 & 2834 & 3456 & 3497 & 1535 & 1711 & 3526 & 2768 & 3483 & 2990 & 582 \\
\hline Grp Volume（v），veh／h & 0 & 1778 & 153 & 417 & 1748 & 916 & 246 & 1448 & 1510 & 534 & 246 & 248 \\
\hline Grp Sat Flow（s），veh／h／ln & 0 & 1791 & 1417 & 1728 & 1749 & 1535 & 1711 & 1763 & 1384 & 1742 & 1791 & 1780 \\
\hline Q Serve（g＿s），s & 0.0 & 48.0 & 3.5 & 6.0 & 59.0 & 59.0 & 18.6 & 39.0 & 39.0 & 13.0 & 15.7 & 16.0 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 48.0 & 3.5 & 6.0 & 59.0 & 59.0 & 18.6 & 39.0 & 39.0 & 13.0 & 15.7 & 16.0 \\
\hline Prop In Lane & 0.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.33 \\
\hline Lane Grp Cap（c），veh／h & 0 & 1323 & 1498 & 159 & 1587 & 850 & 272 & 1058 & 958 & 348 & 431 & 429 \\
\hline V／C Ratio（X） & 0.00 & 1.34 & 0.10 & 2.61 & 1.10 & 1.08 & 0.90 & 1.37 & 1.58 & 1.53 & 0.57 & 0.58 \\
\hline Avail Cap（c＿a），veh／h & 0 & 1323 & 1498 & 159 & 1587 & 850 & 290 & 1058 & 958 & 348 & 431 & 429 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.33 & 0.33 & 0.33 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.09 & 0.09 & 0.09 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 0.0 & 41.0 & 15.3 & 62.0 & 35.5 & 29.0 & 60.6 & 58.6 & 53.8 & 58.5 & 43.4 & 43.5 \\
\hline Incr Delay（d2），s／veh & 0.0 & 160.1 & 0.0 & 744.4 & 55.7 & 53.9 & 3.9 & 166.6 & 259.7 & 253.9 & 5.4 & 5.6 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 0.0 & 49.8 & 1.1 & 19.0 & 35.4 & 36.2 & 8.9 & 43.0 & 50.3 & 18.0 & 7.6 & 7.7 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 0.0 & 201.1 & 15.3 & 806.4 & 91.2 & 82.9 & 64.5 & 225.2 & 313.6 & 312.4 & 48.8 & 49.1 \\
\hline LnGrp LOS & A & F & B & F & F & F & E & F & F & F & D & D \\
\hline Approach Vol，veh／h & & 1931 & & & 3081 & & & 3204 & & & 1028 & \\
\hline Approach Delay，s／veh & & 186.4 & & & 185.5 & & & 254.5 & & & 185.8 & \\
\hline Approach LOS & & F & & & F & & & F & & & F & \\
\hline Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R c\) ），\(s\) & 18.0 & 46.0 & 11.0 & 55.0 & 25.7 & 38.3 & & 66.0 & & & & \\
\hline Change Period（Y＋Rc），s & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & & 7.0 & & & & \\
\hline Max Green Setting（Gmax），s & 13.0 & 39.0 & 6.0 & 48.0 & 22.0 & 30.0 & & 59.0 & & & & \\
\hline Max Q Clear Time（g＿c＋l1），s & 15.0 & 41.0 & 8.0 & 50.0 & 20.6 & 18.0 & & 61.0 & & & & \\
\hline Green Ext Time（p＿c），s & 0.0 & 0.0 & 0.0 & 0.0 & 0.1 & 2.3 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 6th Ctrl Delay & & & 209.7 & & & & & & & & & \\
\hline HCM 6th LOS & & & F & & & & & & & & & \\
\hline
\end{tabular}

HCM 6th Signalized Intersection Summary
5：Park Avenue \＆Alt 2 Ramp
02／04／2020
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & \％\({ }^{1+1}\) & F & & & 个4 & 「 & \({ }^{7 *}\) & 中 \({ }^{\text {c }}\) & \\
\hline Traffic Volume（veh／h） & 0 & 16 & 17 & 605 & 109 & 152 & 0 & 2572 & 278 & 278 & 583 & 39 \\
\hline Future Volume（veh／h） & 0 & 16 & 17 & 605 & 109 & 152 & 0 & 2572 & 278 & 278 & 583 & 39 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 1870 & 1870 & 1870 & 1870 & 1870 \\
\hline Adj Flow Rate，veh／h & 0 & 17 & 18 & 658 & 118 & 165 & 0 & 2796 & 302 & 302 & 634 & 42 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh，\％ & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 & 2 \\
\hline Cap，veh／h & 0 & 23 & 24 & 478 & 98 & 137 & 0 & 2032 & 1126 & 348 & 2392 & 158 \\
\hline Arrive On Green & 0.00 & 0.03 & 0.03 & 0.14 & 0.14 & 0.14 & 0.00 & 0.57 & 0.57 & 0.20 & 1.00 & 1.00 \\
\hline Sat Flow，veh／h & 0 & 831 & 880 & 3456 & 706 & 987 & 0 & 3647 & 1585 & 3456 & 3383 & 224 \\
\hline Grp Volume（v），veh／h & 0 & 0 & 35 & 658 & 0 & 283 & 0 & 2796 & 302 & 302 & 333 & 343 \\
\hline Grp Sat Flow（ s ，veh／h／ln & 0 & 0 & 1712 & 1728 & 0 & 1693 & 0 & 1777 & 1585 & 1728 & 1777 & 1830 \\
\hline Q Serve（g＿s），s & 0.0 & 0.0 & 2.6 & 18.0 & 0.0 & 18.0 & 0.0 & 74.3 & 8.9 & 11.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 0.0 & 2.6 & 18.0 & 0.0 & 18.0 & 0.0 & 74.3 & 8.9 & 11.0 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.00 & & 0.51 & 1.00 & & 0.58 & 0.00 & & 1.00 & 1.00 & & 0.12 \\
\hline Lane Grp Cap（c），veh／h & 0 & 0 & 47 & 478 & 0 & 234 & 0 & 2032 & 1126 & 348 & 1256 & 1294 \\
\hline V／C Ratio（X） & 0.00 & 0.00 & 0.74 & 1.38 & 0.00 & 1.21 & 0.00 & 1.38 & 0.27 & 0.87 & 0.26 & 0.27 \\
\hline Avail Cap（c＿a），veh／h & 0 & 0 & 237 & 478 & 0 & 234 & 0 & 2032 & 1126 & 364 & 1256 & 1294 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 2.00 \\
\hline Upstream Filter（l） & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.09 & 0.09 & 0.09 \\
\hline Uniform Delay（d），s／veh & 0.0 & 0.0 & 62.7 & 56.0 & 0.0 & 56.0 & 0.0 & 27.8 & 6.7 & 51.1 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.0 & 0.0 & 20.1 & 181.6 & 0.0 & 126.4 & 0.0 & 172.4 & 0.6 & 2.2 & 0.0 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.0 & 0.0 & 1.4 & 19.7 & 0.0 & 15.7 & 0.0 & 78.0 & 4.8 & 4.3 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 0.0 & 0.0 & 82.8 & 237.6 & 0.0 & 182.4 & 0.0 & 200.2 & 7.3 & 53.3 & 0.0 & 0.0 \\
\hline LnGrp LOS & A & A & F & F & A & F & A & F & A & D & A & A \\
\hline Approach Vol，veh／h & & 35 & & & 941 & & & 3098 & & & 978 & \\
\hline Approach Delay，s／veh & & 82.8 & & & 221.0 & & & 181.4 & & & 16.5 & \\
\hline Approach LOS & & F & & & F & & & F & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Timer－Assigned Phs & 1 & 2 & 4 & 6 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 17.6 & 80.3 & 8.1 & 97.9 & 24.0 \\
Change Period（Y＋Rc），s & 4.5 & 6.0 & 4.5 & 6.0 & 6.0 \\
Max Green Setting（Gmax），s & 13.7 & 59.3 & 18.0 & 77.5 & 18.0 \\
Max Q Clear Time（g＿c＋11），s & 13.0 & 76.3 & 4.6 & 2.0 & 20.0 \\
Green Ext Time（p＿c），s & 0.1 & 0.0 & 0.1 & 4.0 & 0.0
\end{tabular}

\section*{Intersection Summary}
\begin{tabular}{lr}
\hline HCM 6th Ctrl Delay & 156.2 \\
HCM 6th LOS & F
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 15.1 & & & & & & \\
\hline Intersection LOS & C & & & & & & \\
\hline Approach & & EB & & WB & & SB & SW \\
\hline Entry Lanes & & 1 & & 2 & & 1 & 0 \\
\hline Conflicting Circle Lanes & & 2 & & 2 & & 2 & 2 \\
\hline Adj Approach Flow, veh/h & & 622 & & 1255 & & 426 & 0 \\
\hline Demand Flow Rate, veh/h & & 634 & & 1280 & & 434 & 0 \\
\hline Vehicles Circulating, veh/h & & 308 & & 0 & & 833 & 833 \\
\hline Vehicles Exiting, veh/h & & 959 & & 942 & & 0 & 447 \\
\hline Follow-Up Headway, s & & 3.186 & & 3.186 & & 3.186 & 3.186 \\
\hline Ped Vol Crossing Leg, \#/h & & 0 & & 0 & & 0 & 0 \\
\hline Ped Cap Adj & & 1.000 & & 1.000 & & 1.000 & 1.000 \\
\hline Approach Delay, s/veh & & 16.2 & & 12.6 & & 21.1 & 0.0 \\
\hline Approach LOS & & C & & B & & C & - \\
\hline Lane & Left & & Left & Right & Left & & \\
\hline Designated Moves & LT & & LT & R & LR & & \\
\hline Assumed Moves & LT & & LT & R & LR & & \\
\hline RT Channelized & & & & & & & \\
\hline Lane Util & 1.000 & & 0.651 & 0.349 & 1.000 & & \\
\hline Critical Headway, s & 4.113 & & 4.293 & 4.113 & 4.113 & & \\
\hline Entry Flow, veh/h & 634 & & 833 & 447 & 434 & & \\
\hline Cap Entry Lane, veh/h & 911 & & 1130 & 1130 & 631 & & \\
\hline Entry HV Adj Factor & 0.980 & & 0.980 & 0.980 & 0.982 & & \\
\hline Flow Entry, veh/h & 622 & & 817 & 438 & 426 & & \\
\hline Cap Entry, veh/h & 893 & & 1108 & 1107 & 619 & & \\
\hline VIC Ratio & 0.696 & & 0.737 & 0.396 & 0.688 & & \\
\hline Control Delay, s/veh & 16.2 & & 15.4 & 7.3 & 21.1 & & \\
\hline LOS & C & & C & A & C & & \\
\hline 95th \%tile Queue, veh & 6 & & 7 & 2 & 5 & & \\
\hline
\end{tabular}

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
PM Peak
NJ 24 EB at CR 510
EB
Description: NJ \(24 / \mathrm{CR} 510 \mathrm{CD}\) - ALT 2
Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
2040
\begin{tabular}{|c|c|c|}
\hline Segment Type & \multicolumn{2}{|l|}{Freeway} \\
\hline Weaving configuration & One-S & \\
\hline Number of lanes, N & 3 & 1 n \\
\hline Weaving segment length, LS & 1050 & ft \\
\hline Freeway free-flow speed, FFS & 65 & mi/h \\
\hline Minimum segment speed, SMIN & 15 & mi/h \\
\hline Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
\hline Terrain type & Level & \\
\hline Grade & 0.00 & \% \\
\hline Length & 0.00 & mi \\
\hline
\end{tabular}


Configuration Characteristics
\begin{tabular}{lll} 
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & \(\mathrm{lc} / \mathrm{pc}\) \\
Minimum RR lane changes, LCRR & & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum weaving lane changes, LCMIN & 1297 & \\
Weaving lane changes, LCW & 1464 & \(l \mathrm{lc} / \mathrm{h}\) \\
Non-weaving vehicle index, INW & 359 & \\
Non-weaving lane change, LCNW & 696 & \(l c / h\) \\
Total lane changes, LCALL & 2160 & \(l c / h\)
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, w 0.399
```

Average weaving speed, SW
50.7
mi/h
Average non-weaving speed, SNW
48.1 mi/h

```
Weaving Segment Speed, Density, Level of Service and Capacity
\(\qquad\)
\begin{tabular}{llc} 
Weaving segment speed, S & 48.8 & \(\mathrm{mi} / \mathrm{h}\) \\
Weaving segment density, D & 32.2 & \(\mathrm{pc} / \mathrm{mi}\) \\
Level of service, LOS & D & \\
Weaving segment v/c ratio & 0.779 & \\
Weaving segment flow rate, v & 4614 & \(\mathrm{veh} / \mathrm{h}\)
\end{tabular}
Weaving segment capacity, cW
veh/h

Limitations on Weaving Segments \(\qquad\)
If limit reached, see note.
\begin{tabular}{lcccc} 
& Minimum & Maximum & Actual & Note \\
Weaving length (ft) & 300 & 5316 & 1050 & a, b \\
Density-based capacty, & & Maximum & Analyzed & \\
cIWL (pc/h/ln) & 2350 & 2024 & c \\
v/cratio & & & Maximum & Analyzed
\end{tabular}

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.
\#

\({ }^{2}\)

NJDOT CONCEPT DEVEELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24
MORRIS COUNTY, NEW JERSEY
COUNTY ROUTE 510

HCM 6th Signalized Intersection Summary
3: Park Avenue \& Columbia Turnpike


\footnotetext{
Alt 3B AM Peak - 2020 8:00 am 01/18/2017 2020 Alt 3B AM BMS-IH
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & \(\checkmark\) & & 4 & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & A & & 年市 & \(\hat{\beta}\) & & & 性 & 7 & 7\％\({ }^{\text {\％}}\) & 性 & \\
\hline Traffic Volume（veh／h） & ， & 26 & 8 & 1140 & 285 & 1 & 0 & 972 & 111 & 272 & 1847 & 18 \\
\hline Future Volume（veh／h） & 0 & 26 & 8 & 1140 & 285 & 1 & 0 & 972 & 111 & 272 & 1847 & 18 \\
\hline Initial \(Q(Q b)\) ，veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 1870 & 1870 & 1870 & 1870 & 1870 \\
\hline Adj Flow Rate，veh／h & 0 & 28 & 9 & 1239 & 310 & 1 & 0 & 1057 & 121 & 296 & 2008 & 20 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh，\％ & 0 & 2 & 2 & 2 & 2 & 2 & 0 & ， & 2 & 2 & 2 & 2 \\
\hline Cap，veh／h & 0 & 46 & 15 & 1002 & 660 & 2 & 0 & 1618 & 1181 & 348 & 2112 & 21 \\
\hline Arrive On Green & 0.00 & 0.03 & 0.03 & 0.29 & 0.35 & 0.35 & 0.00 & 0.46 & 0.46 & 0.10 & 0.59 & 0.59 \\
\hline Sat Flow，veh／h & ， & 1356 & 436 & 3456 & 1863 & 0.3 & 0 & 3647 & 1585 & 3456 & 3605 & ． 36 \\
\hline Grp Volume（v），veh／h． & 0 & 0 & 37 & 1239 & 0 & 311 & 0 & 1057 & 121 & 296 & 988 & 1040 \\
\hline Grp Sat Flow（s），veh／h／ln & 0 & 0 & 1792 & 1728 & 0 & 1869 & 0 & 1777 & 1585 & 1728 & 1777 & 1864 \\
\hline Q Serve（g＿s），s & 0.0 & 0.0 & 3.1 & 43.5 & 0.0 & 19.3 & 0.0 & 34.6 & 3.2 & 12.6 & 77.8 & 78.4 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 0.0 & 3.1 & 43.5 & 0.0 & 19.3 & 0.0 & 34.6 & 3.2 & 12.6 & 77.8 & 78.4 \\
\hline Prop In Lane & 0.00 & & 0.24 & 1.00 & & 0.00 & 0.00 & & 1.00 & 1.00 & & 0.02 \\
\hline Lane Grp Cap（c），veh／h & 0 & 0 & 61 & 1002 & 0 & 662 & 0 & 1618 & 1181 & 348 & 1041 & 1092 \\
\hline VIC Ratio（X） & 0.00 & 0.00 & 0.60 & 1.24 & 0.00 & 0.47 & 0.00 & 0.65 & 0.10 & 0.85 & 0.95 & 0.95 \\
\hline Avail Cap（c＿a），veh／h & 0 & 0 & 215 & 1002 & 0 & 822 & 0 & 1618 & 1181 & 463 & 1041 & 1092 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 0.0 & 0.0 & 71.4 & 53.2 & 0.0 & 37.5 & 0.0 & 31.7 & 5.3 & 66.3 & 29.0 & 29.1 \\
\hline Incr Delay（d2），s／veh & 0.0 & 0.0 & 9.3 & 115.0 & 0.0 & 0.5 & 0.0 & 2.1 & 0.2 & 11.0 & 18.0 & 17.9 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{llllllllllllll} 
Unsig．Movement Delay，s／veh & & & & & & \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & & & \\
\hline LnGrp Delay（d），s／veh & 0.0 & 0.0 & 80.7 & 168.3 & 0.0 & 38.0 & 0.0 & 33.8 & 5.4 & 77.3 & 47.0 & 47.0 \\
\hline LnGrp LOS & A & A & F & F & A & D & A & C & A & E & D & ， \\
\hline Approach Vol，veh／h & & 37 & & & 1550 & & & 1178 & & & 2324 & \\
\hline Approach Delay，s／veh & & 80.7 & & & 142.2 & & & 30.9 & & & 50.9 & \\
\hline Approach LOS & & F & & & F & & & C & & & D & \\
\hline Timer－Assigned Phs & 1 & 2 & 3 & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration（ \(G+Y+\mathrm{Rc}\) ），\(s\) & 19.6 & 72.8 & 48.0 & 9.6 & & 92.4 & & 57.6 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & 4.5 & 4.5 & 4.5 & 4.5 & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting（Gmax），s & 20.1 & 50.4 & 43.5 & 18.0 & & 75.0 & & 66.0 & & & & \\
\hline Max Q Clear Time（g＿c＋1），s & 14.6 & 36.6 & 45.5 & 5.1 & & 80.4 & & 21.3 & & & & \\
\hline Green Ext Time（p＿c），s & 0.5 & 6.5 & 0.0 & 0.1 & & 0.0 & & 1.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{HCM 6th Ctrl Delay 74.3} \\
\hline \multicolumn{13}{|l|}{HCM 6th LOS E} \\
\hline
\end{tabular}

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:

Operational Analysis \(\qquad\)

Analyst: SMC
Agency/Co.:
IH
Date Performed:
Analysis Time Period:
Freeway/Dir of Travel:
Dec 2019
AM Peak

Weaving Location:
NJ 24 EB at CR 510
Analysis Year:
EB

Description:

\section*{2040}

NJ 24/CR 510 CD - Alt 3

Inputs \(\qquad\)

Segment Type Weaving configuration
Number of lanes, N Weaving segment length, LS Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length

Level
Freeway
One-Sided
3 ln
600 ft
\(65 \mathrm{mi} / \mathrm{h}\)
\(15 \mathrm{mi} / \mathrm{h}\)
\(2350 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}\)
0.00
\%
0.00 mi

Conversion to \(\mathrm{pc} / \mathrm{h}\) Under Base Conditions \(\qquad\) Volume Components
VFF VRF VFR VRR

Volume, V
Peak hour factor, PHF
Peak 15-min volume, v15
\(3181173 \quad 1510 \quad 622\) veh/h
\(0.90 \quad 0.90 \quad 0.90 \quad 0.90\)

Trucks and buses 5
Recreational vehicles 0
Trucks and buses PCE, ET
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
\(884 \quad 48 \quad 419 \quad 173\)
\(\begin{array}{llll}5 & 5 & 5 & 0\end{array}\)
\%
\(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\)

Driver population adjustment, fP
\(\begin{array}{llll}1.5 & 1.5 & 1.5 & 1.5\end{array}\)
\(\begin{array}{llll}1.2 & 1.2 & 1.2 & 1.2\end{array}\)
\(0.976 \quad 0.976 \quad 0.976 \quad 1.000\)
\(\begin{array}{llll}1.00 & 1.00 & 1.00 & 1.00\end{array}\)
Flow rate, v
\(36231971720 \quad 691 \mathrm{pc} / \mathrm{h}\)
Volume ratio, VR
0.308

Configuration Characteristics

Number of maneuver lanes, NWL
Interchange density, ID
Minimum RF lane changes, LCRF

\section*{2}
1.0

1
ln
int/mi
1c/pc
\begin{tabular}{lcc} 
Minimum FR lane changes, LCFR & 1 & \(\mathrm{lc} / \mathrm{pc}\) \\
Minimum RR lane changes, LCRR & \(\mathrm{lc} / \mathrm{pc}\)
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W
Average weaving speed, SW \(\mathrm{mi} / \mathrm{h}\)
Average non-weaving speed, SNW mi/h
\begin{tabular}{|c|c|c|}
\hline \(\qquad\) Weaving Segment Spee Weaving segment speed, S & \multicolumn{2}{|l|}{Level of Service and Capacity} \\
\hline Weaving segment density, D & & pc/mi \\
\hline Level of service, LOS & F & \\
\hline Weaving segment v/c ratio & 1.062 & \\
\hline Weaving segment flow rate, v & 6096 & veh/h \\
\hline Weaving segment capacity, cW & 5742 & veh/h \\
\hline
\end{tabular}

Limitations on Weaving Segments
If limit reached, see note.
\begin{tabular}{lcccc} 
& Minimum & Maximum & Actual & Note \\
Weaving length (ft) & 300 & 5666 & 600 & \(\mathrm{a}, \mathrm{b}\) \\
& & Maximum & Analyzed & \\
Density-based capacty, & & 2350 & 1962 & c \\
cIWL (pc/h/ln) & & & \\
v/c ratio & & 1.00 & Analyzed & \\
& & 1.062 & d
\end{tabular}

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F .
E
IH Engineers. p.c.
NJDOT CONCEPT DEVELOPMENT - COLUMBIA TURNPIKE (C.R. 510) AND NJ ROUTE 24
MORRIS COUNTY, NEW JERSEY


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 中4 & Tr & \％ 7 & 众 & フr & \({ }^{7}\) & 种 & Tr & \％ & 平 \({ }^{\text {a }}\) & \\
\hline Traffic Volume（veh／h） & 115 & 1189 & 500 & 243 & 1503 & 733 & 209 & 1073 & 864 & 249 & 580 & 47 \\
\hline Future Volume（veh／h） & 115 & 1189 & 500 & 243 & 1503 & 733 & 209 & 1073 & 864 & 249 & 580 & 47 \\
\hline Initial \(Q(Q b)\) ，veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1870 & 1885 & 1900 & 1870 & 1841 & 1811 & 1796 & 1856 & 1856 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 149 & 1265 & 581 & 273 & 1748 & 916 & 246 & 1309 & 982 & 283 & 667 & 81 \\
\hline Peak Hour Factor & 0.77 & 0.94 & 0.86 & 0.89 & 0.86 & 0.80 & 0.85 & 0.82 & 0.88 & 0.88 & 0.87 & 0.58 \\
\hline Percent Heavy Veh，\％ & 2 & 1 & 0 & 2 & 4 & 6 & 7 & 3 & 3 & 1 & 1 & 1 \\
\hline Cap，veh／h & 131 & 1244 & 1419 & 320 & 1282 & 706 & 262 & 1081 & 1105 & 325 & 793 & 96 \\
\hline Arrive On Green & 0.07 & 0.35 & 0.35 & 0.09 & 0.37 & 0.37 & 0.15 & 0.31 & 0.31 & 0.09 & 0.25 & 0.25 \\
\hline Sat Flow，veh／h & 1781 & 3582 & 2834 & 3456 & 3497 & 1535 & 1711 & 3526 & 2768 & 3483 & 3216 & 390 \\
\hline Grp Volume（v），veh／h & 149 & 1265 & 581 & 273 & 1748 & 916 & 246 & 1309 & 982 & 283 & 371 & 377 \\
\hline Grp Sat Flow（s），veh／h／ln & 1781 & 1791 & 1417 & 1728 & 1749 & 1535 & 1711 & 1763 & 1384 & 1742 & 1791 & 1815 \\
\hline Q Serve（g＿s），s & 11.0 & 52.1 & 19.3 & 11.7 & 55.0 & 55.0 & 21.3 & 46.0 & 46.0 & 12.0 & 29.5 & 29.6 \\
\hline Cycle Q Clear（g＿c），s & 11.0 & 52.1 & 19.3 & 11.7 & 55.0 & 55.0 & 21.3 & 46.0 & 46.0 & 12.0 & 29.5 & 29.6 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.21 \\
\hline Lane Grp Cap（c），veh／h & 131 & 1244 & 1419 & 320 & 1282 & 706 & 262 & 1081 & 1105 & 325 & 442 & 448 \\
\hline V／C Ratio（X） & 1.14 & 1.02 & 0.41 & 0.85 & 1.36 & 1.30 & 0.94 & 1.21 & 0.89 & 0.87 & 0.84 & 0.84 \\
\hline Avail Cap（c＿a），veh／h & 131 & 1244 & 1419 & 369 & 1282 & 706 & 262 & 1081 & 1105 & 325 & 442 & 448 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（1） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 69.5 & 48.9 & 23.5 & 67.1 & 47.5 & 40.5 & 62.8 & 52.0 & 42.0 & 67.1 & 53.7 & 53.7 \\
\hline Incr Delay（d2），s／veh & 121.5 & 29.7 & 0.2 & 15.7 & 168.5 & 144.2 & 39.0 & 103.6 & 10.7 & 21.6 & 17.3 & 17.2 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 9.4 & 27.9 & 6.3 & 5.7 & 52.9 & 52.7 & 12.1 & 35.6 & 17.8 & 6.3 & 15.4 & 15.6 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 191.0 & 78.6 & 23.7 & 82.8 & 216.0 & 184.7 & 101.8 & 155.6 & 52.7 & 88.7 & 71.0 & 70.9 \\
\hline LnGrp LOS & F & F & C & F & F & F & F & F & D & F & E & E \\
\hline Approach Vol，veh／h & & 1995 & & & 2937 & & & 2537 & & & 1031 & \\
\hline Approach Delay，s／veh & & 71.0 & & & 193.8 & & & 110.5 & & & 75.8 & \\
\hline Approach LOS & & E & & & F & & & F & & & E & \\
\hline Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & 19.0 & 53.0 & 18.9 & 59.1 & 28.0 & 44.0 & 16.0 & 62.0 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），\(s\) & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & & & & \\
\hline Max Green Setting（Gmax），s & 14.0 & 46.0 & 16.0 & 50.0 & 23.0 & 37.0 & 11.0 & 55.0 & & & & \\
\hline Max Q Clear Time（g＿c＋l1），s & 14.0 & 48.0 & 13.7 & 54.1 & 23.3 & 31.6 & 13.0 & 57.0 & & & & \\
\hline Green Ext Time（p＿c），s & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 & 2.1 & 0.0 & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 6th Ctrl Delay & & & 125.8 & & & & & & & & & \\
\hline HCM 6th LOS & & & F & & & & & & & & & \\
\hline
\end{tabular}

12：Park Avenue \＆Alt 3 Ramp
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\hat{\beta}\) & & 介年 & \(\hat{\square}\) & & & 个个 & 「 & 74 & 館 & \\
\hline Traffic Volume（veh／h） & 0 & 22 & 13 & 391 & 52 & 2 & 0 & 2145 & 461 & 628 & 655 & 39 \\
\hline Future Volume（veh／h） & 0 & 22 & 13 & 391 & 52 & 2 & 0 & 2145 & 461 & 628 & 655 & 39 \\
\hline Initial \(Q(Q b)\) ，veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 0 & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 1870 & 1870 & 1870 & 1870 & 1870 \\
\hline Adj Flow Rate，veh／h & 0 & 24 & 14 & 425 & 57 & 2 & 0 & 2332 & 501 & 683 & 712 & 42 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh，\％ & 0 & 2 & 2 & & 2 & 2 & 0 & 2 & 2 & 2 & 2 & 2 \\
\hline Cap，veh／h & 0 & 39 & 23 & 392 & 325 & 11 & 0 & 1895 & 1025 & 654 & 2573 & 152 \\
\hline Arrive On Green & 0.00 & 0.04 & 0.04 & 0.11 & 0.18 & 0.18 & 0.00 & 0.53 & 0.53 & 0.19 & 0.75 & 0.75 \\
\hline Sat Flow，veh／h & 0 & 1108 & 646 & 3456 & 1796 & 63 & 0 & 3647 & 1585 & 3456 & 3410 & 201 \\
\hline Grp Volume（v），veh／h & 0 & 0 & 38 & 425 & 0 & 59 & 0 & 2332 & 501 & 683 & 371 & 383 \\
\hline Grp Sat Flow（s），veh／h／ln & 0 & 0 & 1754 & 1728 & 0 & 1859 & 0 & 1777 & 1585 & 1728 & 1777 & 1834 \\
\hline Q Serve（g＿s），s & 0.0 & 0.0 & 3.0 & 15.9 & 0.0 & 3.8 & 0.0 & 74.7 & 22.9 & 26.5 & 9.1 & 9.1 \\
\hline Cycle Q Clear（g＿c），s & 0.0 & 0.0 & 3.0 & 15.9 & 0.0 & 3.8 & 0.0 & 74.7 & 22.9 & 26.5 & 9.1 & 9.1 \\
\hline Prop In Lane & 0.00 & & 0.37 & 1.00 & & 0.03 & 0.00 & & 1.00 & 1.00 & & 0.11 \\
\hline Lane Grp Cap（c），veh／h & 0 & 0 & 62 & 392 & 0 & 337 & 0 & 1895 & 1025 & 654 & 1341 & 1384 \\
\hline V／C Ratio（X） & 0.00 & 0.00 & 0.61 & 1.08 & 0.00 & 0.18 & 0.00 & 1.23 & 0.49 & 1.04 & 0.28 & 0.28 \\
\hline Avail Cap（c＿a），veh／h & 0 & 0 & 226 & 392 & 0 & 510 & 0 & 1895 & 1025 & 654 & 1341 & 1384 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 0.0 & 0.0 & 66.6 & 62.0 & 0.0 & 48.5 & 0.0 & 32.7 & 12.8 & 56.8 & 5.3 & 5.3 \\
\hline Incr Delay（d2），slveh & 0.0 & 0.0 & 9.5 & 69.5 & 0.0 & 0.2 & 0.0 & 108.6 & 1.7 & 47.2 & 0.5 & 0.5 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.0 & 0.0 & 1.5 & 10.6 & 0.0 & 1.7 & 0.0 & 59.1 & 7.8 & 15.5 & 2.9 & 3.0 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 0.0 & 0.0 & 76.0 & 131.5 & 0.0 & 48.7 & 0.0 & 141.3 & 14.4 & 104.0 & 5.8 & 5.8 \\
\hline LnGrp LOS & A & A & E & F & A & D & A & F & B & F & A & A \\
\hline Approach Vol，veh／h & & 38 & & & 484 & & & 2833 & & & 1437 & \\
\hline Approach Delay，s／veh & & 76.0 & & & 121.4 & & & 118.8 & & & 52.5 & \\
\hline Approach LOS & & E & & & F & & & F & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Timer－Assigned Phs & 1 & 2 & 3 & 4 & 6 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 31.0 & 79.2 & 20.4 & 9.4 & 110.2 & 29.8 \\
Change Period（Y＋Rc），s & 4.5 & 4.5 & 4.5 & 4.5 & 4.5 & 4.5 \\
Max Green Setting（Gmax），s & 26.5 & 61.6 & 15.9 & 18.0 & 92.6 & 38.4 \\
\hline Max Q Clear Time（g＿c＋11），s & 28.5 & 76.7 & 17.9 & 5.0 & 11.1 & 5.8 \\
Green Ext Time（p＿c），s & 0.0 & 0.0 & 0.0 & 0.1 & 4.6 & 0.2
\end{tabular}

Intersection Summary
HCM 6th Ctrl Delay
98.9

HCM 6th LOS
F

HCS 2010: Freeway Weaving Release 6.65
Phone:
Fax:
E-mail:

Operational Analysis
\begin{tabular}{ll} 
Analyst: & SMC \\
Agency/Co.: & IH \\
Date Performed: & 2020 \\
Analysis Time Period: & PM Peak \\
Freeway/Dir of Travel: & NJ 24 EB at CR 510 \\
Weaving Location: & EB \\
Analysis Year: & 2040 \\
Description: & NJ \(24 / C R\) 510 CD - Alt 3
\end{tabular}

Inputs \(\qquad\)


Configuration Characteristics
\begin{tabular}{lll} 
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(\mathrm{lc} / \mathrm{pc}\)
\end{tabular}
\begin{tabular}{lll} 
Minimum FR lane changes, LCFR & 1 & \(\mathrm{lc} / \mathrm{pc}\) \\
Minimum RR lane changes, LCRR & & \(\mathrm{lc} / \mathrm{pc}\) \\
& & \\
Minimum weaving lane changes, LCMIN & 1354 & \(\mathrm{lc} / \mathrm{h}\) \\
Weaving lane changes, LCW & 1460 & \(\mathrm{lc} / \mathrm{h}\) \\
Non-weaving vehicle index, INW & 208 & \\
Non-weaving lane change, LCNW & 463 & \(\mathrm{lc} / \mathrm{h}\) \\
Total lane changes, LCALL & 1923 & \(\mathrm{lc} / \mathrm{h}\)
\end{tabular}

Weaving and Non-Weaving Speeds
\begin{tabular}{lll} 
Weaving intensity factor, W & 0.567 & \\
Average weaving speed, SW & 46.9 & \(\mathrm{mi} / \mathrm{h}\) \\
Average non-weaving speed, SNW & 47.5 & \(\mathrm{mi} / \mathrm{h}\)
\end{tabular}
Weaving Segment Speed, Density, Level of Service and Capacity

Weaving segment speed, S \(47.4 \mathrm{mi} / \mathrm{h}\) Weaving segment density, D \(34.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) Level of service, LOS Weaving segment v/c ratio

D Weaving segment flow rate, v Weaving segment capacity, cW0.811
```

Weaving segment capacity, cW

```
4715 veh/h
5810 veh/h

Limitations on Weaving Segments \(\qquad\)
If limit reached, see note.
\begin{tabular}{lccc} 
& Minimum & Maximum & Actual
\end{tabular} Note

\section*{Notes:}
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is \(F\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 个个 & 「 & \({ }^{*}{ }^{*}\) & 个4 & 「 & \％ & ¢ \(\uparrow\) & F＂ & \({ }^{*}{ }^{*}\) & 个 \({ }_{\text {d }}\) & \\
\hline Traffic Volume（veh／h） & 38 & 1037 & 325 & 416 & 1332 & 159 & 232 & 360 & 604 & 396 & 873 & 164 \\
\hline Future Volume（veh／h） & 38 & 1037 & 325 & 416 & 1332 & 159 & 232 & 360 & 604 & 396 & 873 & 164 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & － & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1870 & 1885 & 1900 & 1870 & 1841 & 1811 & 1796 & 1856 & 1856 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 60 & 1127 & 464 & 533 & 1825 & 218 & 261 & 387 & 629 & 528 & 1015 & 180 \\
\hline Peak Hour Factor & 0.63 & 0.92 & 0.70 & 0.78 & 0.73 & 0.73 & 0.89 & 0.93 & 0.96 & 0.75 & 0.86 & 0.91 \\
\hline Percent Heavy Veh，\％ & 2 & 1 & 0 & 2 & 4 & 6 & 7 & 3 & 3 & 1 & 1 & 1 \\
\hline Cap，veh／h & 77 & 1113 & 664 & 583 & 1527 & 929 & 173 & 669 & 992 & 587 & 781 & 138 \\
\hline Arrive On Green & 0.04 & 0.31 & 0.31 & 0.17 & 0.44 & 0.44 & 0.10 & 0.19 & 0.19 & 0.17 & 0.26 & 0.26 \\
\hline Sat Flow，veh／h & 1781 & 3582 & 1610 & 3456 & 3497 & 1535 & 1711 & 3526 & 2768 & 3483 & 3041 & 538 \\
\hline Grp Volume（v），veh／h & 60 & 1127 & 464 & 533 & 1825 & 218 & 261 & 387 & 629 & 528 & 597 & 598 \\
\hline Grp Sat Flow（ s ，veh／h／ln & 1781 & 1791 & 1610 & 1728 & 1749 & 1535 & 1711 & 1763 & 1384 & 1742 & 1791 & 1788 \\
\hline Q Serve（g＿s），s & 4.9 & 46.0 & 35.2 & 22.4 & 64.6 & 9.7 & 15.0 & 14.8 & 27.9 & 22.0 & 38.0 & 38.0 \\
\hline Cycle Q Clear（g＿c），s & 4.9 & 46.0 & 35.2 & 22.4 & 64.6 & 9.7 & 15.0 & 14.8 & 27.9 & 22.0 & 38.0 & 38.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.30 \\
\hline Lane Grp Cap（c），veh／h & 77 & 1113 & 664 & 583 & 1527 & 929 & 173 & 669 & 992 & 587 & 460 & 459 \\
\hline V／C Ratio（X） & 0.78 & 1.01 & 0.70 & 0.91 & 1.19 & 0.23 & 1.51 & 0.58 & 0.63 & 0.90 & 1.30 & 1.30 \\
\hline Avail Cap（c＿a），veh／h & 108 & 1113 & 664 & 631 & 1527 & 929 & 173 & 669 & 992 & 683 & 460 & 459 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 70.1 & 51.0 & 35.9 & 60.4 & 41.7 & 13.4 & 66.5 & 54.6 & 39.4 & 60.3 & 55.0 & 55.0 \\
\hline Incr Delay（d2），s／veh & 21.0 & 30.0 & 3.2 & 17.2 & 94.5 & 0.1 & 254.9 & 1.2 & 1.3 & 13.6 & 149.6 & 151.1 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 2.7 & 24.8 & 13.9 & 11.0 & 46.3 & 3.2 & 18.8 & 6.7 & 9.4 & 10.8 & 36.1 & 36.2 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrrr} 
LnGrp Delay（d），s／veh & 91.1 & 81.0 & 39.2 & 77.6 & 136.1 & 13.6 & 321.4 & 55.8 & 40.7 & 73.9 & 204.6 & 206.1 \\
LnGrp LOS & F & F & D & E & F & B & F & E & D & E & F & F \\
\hline Approach Vol，veh／h & & 1651 & & & 2576 & & & 1277 & & 1723 \\
Approach Delay，s／veh & & 69.6 & & & 113.7 & & & 102.7 & & 165.1 \\
Approach LOS & E & & & F & & & F & & F
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 29.9 & 35.1 & 30.0 & 53.0 & 20.0 & 45.0 & 11.4 & 71.6 \\
Change Period（Y＋Rc），s & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 \\
Max Green Setting（Gmax），s & 29.0 & 24.0 & 27.0 & 46.0 & 15.0 & 38.0 & 9.0 & 64.0 \\
Max Q Clear Time（g＿c＋I1），s & 24.0 & 29.9 & 24.4 & 48.0 & 17.0 & 40.0 & 6.9 & 66.6 \\
Green Ext Time（p＿c），s & 1.0 & 0.0 & 0.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 113.9
HCM 6th LOS
F

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
AM Peak
NJ 24 EB at CR 510
\(\begin{array}{ll}\text { Analysis Year: } & 2040 \\ \text { Description: } & \text { NJ } 24 / C R 510 \text { CD - Alt } 4\end{array}\)
Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
Nu 24/CR 510 CD - Alt 4
\begin{tabular}{|c|c|c|}
\hline Segment Type & \multicolumn{2}{|l|}{Freeway} \\
\hline Weaving configuration & One-S & \\
\hline Number of lanes, \(N\) & 3 & 1 n \\
\hline Weaving segment length, LS & 600 & ft \\
\hline Freeway free-flow speed, FFS & 65 & mi/h \\
\hline Minimum segment speed, SMIN & 15 & mi/h \\
\hline Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
\hline Terrain type & Level & \\
\hline Grade & 0.00 & \% \\
\hline Length & 0.00 & mi \\
\hline
\end{tabular}


Configuration Characteristics
\begin{tabular}{lll} 
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & \(l \mathrm{c} / \mathrm{pc}\) \\
Minimum FR lane changes, LCFR & 1 & lc/pc \\
Minimum RR lane changes, LCRR & & lc/pc \\
Minimum weaving lane changes, LCMIN & & lc/h \\
Weaving lane changes, LCW & lc/h \\
Non-weaving vehicle index, INW & & \\
Non-weaving lane change, LCNW & & lc/h \\
Total lane changes, LCALL
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W
```

Average weaving speed, SW
mi/h
Average non-weaving speed, SNW
mi/h
Weaving Segment Speed, Density, Level of Service and Capacity

```
\(\qquad\)
```

\overline{Weaving segment speed, S}
mi/h
Weaving segment density, D pc/mi/ln
Level of service, LOS F
Weaving segment v/c ratio 1.165
Weaving segment flow rate, v veh/h
Weaving segment capacity, cW v810 veh/h
Limitations on Weaving Segments

``` \(\qquad\)
```

$\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

```

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:

Operational Analysis \(\qquad\)
\begin{tabular}{ll} 
Analyst: & VJS \\
Agency/Co.: & IH \\
Date Performed: & Feb 2020 \\
Analysis Time Period: & AM Peak \\
Freeway/Dir of Travel: & NJ 24 EB at CR 510 \\
Weaving Location: & EB \\
Analysis Year: & 2040 \\
Description: & NJ \(24 / C R 510\) CD - Alt 4, Weave 2
\end{tabular}

Inputs \(\qquad\)

Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Level

Length
0.00
\%
0.00 mi


Configuration Characteristics
\begin{tabular}{|c|c|c|}
\hline Number of maneuver lanes, NWL & 2 & In \\
\hline Interchange density, ID & 1.0 & int/mi \\
\hline Minimum RF lane changes, LCRF & 1 & lc/pc \\
\hline Minimum FR lane changes, LCFR & 1 & lc/pc \\
\hline Minimum RR lane changes, LCRR & & lc/pc \\
\hline Minimum weaving lane changes, LCMIN & & \(1 \mathrm{c} / \mathrm{h}\) \\
\hline Weaving lane changes, LCW & & lc/h \\
\hline Non-weaving vehicle index, INW & & \\
\hline Non-weaving lane change, LCNW & & lc/h \\
\hline Total lane changes, LCALL & & lc/h \\
\hline
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W
```

Average weaving speed, SW
mi/h
Average non-weaving speed, SNW
mi/h
Weaving Segment Speed, Density, Level of Service and Capacity

```
\(\qquad\)
```

\overline{Weaving segment speed, S}
mi/h
Weaving segment density, D pc/mi/ln
Level of service, LOS F
Weaving segment v/c ratio 1.108
Weaving segment flow rate, v veh/h
Weaving segment capacity, cW 5830 veh/h
Limitations on Weaving Segments

``` \(\qquad\)
```

$\overline{\text { If }} \bar{l} \overline{\text { im }} \overline{i t}$ reached, see note.

| | Minimum | Maximum | Actual |
| :--- | :---: | :---: | :---: | Note

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 个 \(\uparrow\) & F & \％\({ }^{1+1}\) & 个4 & 「 & \％ & 个4 & 「「＇ & \％\({ }^{1 / 1}\) & 中t & \\
\hline Traffic Volume（veh／h） & 114 & 1556 & 132 & 240 & 1503 & 732 & 209 & 1072 & 1329 & 470 & 358 & 47 \\
\hline Future Volume（veh／h） & 114 & 1556 & 132 & 240 & 1503 & 732 & 209 & 1072 & 1329 & 470 & 358 & 47 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ， & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1870 & 1870 & 1870 & 1885 & 1870 & 1885 & 1885 & 1900 & 1900 & 1885 & 1885 & 1885 \\
\hline Adj Flow Rate，veh／h & 148 & 1655 & 153 & 270 & 1748 & 915 & 246 & 1307 & 1510 & 534 & 411 & 81 \\
\hline Peak Hour Factor & 0.77 & 0.94 & 0.86 & 0.89 & 0.86 & 0.80 & 0.85 & 0.82 & 0.88 & 0.88 & 0.87 & 0.58 \\
\hline Percent Heavy Veh，\％ & 2 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline Cap，veh／h & 170 & 1540 & 877 & 163 & 1367 & 796 & 215 & 890 & 831 & 395 & 717 & 140 \\
\hline Arrive On Green & 0.10 & 0.43 & 0.43 & 0.05 & 0.38 & 0.38 & 0.12 & 0.25 & 0.25 & 0.11 & 0.24 & 0.24 \\
\hline Sat Flow，veh／h & 1781 & 3554 & 1585 & 3483 & 3554 & 1598 & 1795 & 3610 & 2834 & 3483 & 2987 & 584 \\
\hline Grp Volume（v），veh／h & 148 & 1655 & 153 & 270 & 1748 & 915 & 246 & 1307 & 1510 & 534 & 245 & 247 \\
\hline Grp Sat Flow（ s ，veh／h／ln & 1781 & 1777 & 1585 & 1742 & 1777 & 1598 & 1795 & 1805 & 1417 & 1742 & 1791 & 1780 \\
\hline Q Serve（g＿s），s & 12.3 & 65.0 & 7.2 & 7.0 & 57.7 & 57.7 & 18.0 & 37.0 & 37.0 & 17.0 & 18.1 & 18.4 \\
\hline Cycle Q Clear（g＿c），s & 12.3 & 65.0 & 7.2 & 7.0 & 57.7 & 57.7 & 18.0 & 37.0 & 37.0 & 17.0 & 18.1 & 18.4 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 0.33 \\
\hline Lane Grp Cap（c），veh／h & 170 & 1540 & 877 & 163 & 1367 & 796 & 215 & 890 & 831 & 395 & 430 & 427 \\
\hline V／C Ratio（X） & 0.87 & 1.07 & 0.17 & 1.66 & 1.28 & 1.15 & 1.14 & 1.47 & 1.82 & 1.35 & 0.57 & 0.58 \\
\hline Avail Cap（c＿a），veh／h & 178 & 1540 & 877 & 163 & 1367 & 796 & 215 & 890 & 831 & 395 & 430 & 427 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 67.0 & 42.5 & 16.6 & 71.5 & 46.1 & 37.6 & 66.0 & 56.5 & 53.0 & 66.5 & 50.2 & 50.3 \\
\hline Incr Delay（d2），s／veh & 33.6 & 45.9 & 0.1 & 323.1 & 131.1 & 81.8 & 104.8 & 216.7 & 372.2 & 174.6 & 1.8 & 1.9 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 7.1 & 37.3 & 2.5 & 10.4 & 49.2 & 45.2 & 14.5 & 43.5 & 58.1 & 17.1 & 8.3 & 8.4 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrrr} 
LnGrp Delay（d），S／veh & 100.5 & 88.4 & 16.7 & 394.6 & 177.3 & 119.4 & 170.8 & 273.2 & 425.2 & 241.1 & 52.0 & 52.2 \\
LnGrp LOS & F & F & B & F & F & F & F & F & F & F & D & D \\
\hline Approach Vol，veh／h & & 1956 & & & 2933 & & & 3063 & & 1026 \\
Approach Delay，s／veh & & 83.7 & & & 179.2 & & 339.9 & & 150.5 \\
Approach LOS & F & & & F & & & F & & F
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration \((G+Y+R c)\) ，s & 22.0 & 44.0 & 12.0 & 72.0 & 23.0 & 43.0 & 19.3 & 64.7 \\
Change Period（Y＋Rc），s & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 & 7.0 \\
Max Green Setting（Gmax），s & 17.0 & 37.0 & 7.0 & 65.0 & 18.0 & 36.0 & 15.0 & 57.0 \\
Max Q Clear Time（g＿c＋11），s & 19.0 & 39.0 & 9.0 & 67.0 & 20.0 & 20.4 & 14.3 & 59.7 \\
Green Ext Time（p＿C），s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.5 & 0.0 & 0.0
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 209.9
HCM 6th LOS

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
Analyst: VJS
Agency/Co.: IH
Date Performed: Feb 2020
Analysis Time Period:
Freeway/Dir of Travel:
Weaving Location:
Analysis Year:
PM Peak
NJ 24 EB at CR 510
EB
Description: NJ \(24 / C R 510\) CD - Alt 4
Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
2040
\begin{tabular}{lll} 
Segment Type & Freeway & \\
Weaving configuration & One-Sided & \\
Number of lanes, N & 3 & ln \\
Weaving segment length, LS & 600 & ft \\
Freeway free-flow speed, FFS & 65 & \(\mathrm{mi} / \mathrm{h}\) \\
Minimum segment speed, SMIN & 15 & \(\mathrm{mi} / \mathrm{h}\) \\
Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
Terrain type & & \\
Grade & 0.00 & \\
Length & 0.00 & mi
\end{tabular}


Configuration Characteristics
\begin{tabular}{|c|c|c|}
\hline Number of maneuver lanes, NWL & 2 & ln \\
\hline Interchange density, ID & 1.0 & int/mi \\
\hline Minimum RF lane changes, LCRF & 1 & lc/pc \\
\hline Minimum FR lane changes, LCFR & 1 & lc/pc \\
\hline Minimum RR lane changes, LCRR & & lc/pc \\
\hline Minimum weaving lane changes, LCMIN & 1409 & lc/h \\
\hline Weaving lane changes, LCW & 1515 & lc/h \\
\hline Non-weaving vehicle index, INW & 222 & \\
\hline Non-weaving lane change, LCNW & 510 & \(\mathrm{lc} / \mathrm{h}\) \\
\hline Total lane changes, LCALL & 2025 & lc/h \\
\hline
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.590
```

Average weaving speed, SW
46.4
mi/h
Average non-weaving speed, SNW
mi/h

```
Weaving Segment Speed, Density, Level of Service and Capacity
\(\qquad\)
\begin{tabular}{lcc} 
Weaving segment speed, S & 46.6 & \(\mathrm{mi} / \mathrm{h}\) \\
Weaving segment density, D & 36.5 & \(\mathrm{pc} / \mathrm{mi}\) \\
Level of service, LOS & E & \\
Weaving segment v/c ratio & 0.857 & \\
Weaving segment flow rate, v & 4985 & \(\mathrm{veh} / \mathrm{h}\)
\end{tabular}
Weaving segment capacity, cW
veh/h

Limitations on Weaving Segments \(\qquad\)
If \(\bar{l} \overline{\mathrm{I}} \mathrm{i} \overline{\mathrm{i}}\) reachē, see note.
\begin{tabular}{lccc} 
& Minimum & Maximum & Actual
\end{tabular} Note

Notes:
a. In weaving segments shorter than 300 ft , weaving vehicles are assumed to make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment, under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

HCS 2010: Freeway Weaving Release 6.65
Phone: Fax:
E-mail:
Operational Analysis \(\qquad\)
\begin{tabular}{ll} 
Analyst: & VJS \\
Agency/Co.: & IH \\
Date Performed: & Feb 2020 \\
Analysis Time Period: & PM Peak \\
Freeway/Dir of Travel: & NJ 24 EB at CR 510 \\
Weaving Location: & EB \\
Analysis Year: & 2040 \\
Description: & NJ \(24 / C R 510\) CD - Alt 4, Weave 2
\end{tabular}

Inputs \(\qquad\)
Segment Type
Weaving configuration
Number of lanes, N
Weaving segment length, LS
Freeway free-flow speed, FFS
Minimum segment speed, SMIN
Freeway maximum capacity, cIFL
Terrain type
Grade
Length
NJ 24/CR 510 CD - Alt 4, Weave 2
\begin{tabular}{lll} 
Segment Type & Freeway & \\
Weaving configuration & One-Sided & \\
Number of lanes, N & 3 & ln \\
Weaving segment length, LS & 900 & ft \\
Freeway free-flow speed, FFS & 65 & \(\mathrm{mi} / \mathrm{h}\) \\
Minimum segment speed, SMIN & 15 & \(\mathrm{mi} / \mathrm{h}\) \\
Freeway maximum capacity, cIFL & 2350 & \(\mathrm{pc} / \mathrm{h} / \mathrm{ln}\) \\
Terrain type & & \\
Grade & 0.00 & \\
Length & 0.00 & mi
\end{tabular}


Configuration Characteristics
\begin{tabular}{lll} 
Number of maneuver lanes, NWL & 2 & ln \\
Interchange density, ID & 1.0 & int/mi \\
Minimum RF lane changes, LCRF & 1 & lc/pc \\
Minimum FR lane changes, LCFR & 1 & lc/pc \\
Minimum RR lane changes, LCRR & & lc/pc \\
Minimum weaving lane changes, LCMIN & & \\
Weaving lane changes, LCW & 2187 & lc/h \\
Non-weaving vehicle index, INW & 343 & \\
Non-weaving lane change, LCNW & 696 & lc/h \\
Total lane changes, LCALL & 2883 & lc/h
\end{tabular}

Weaving and Non-Weaving Speeds
Weaving intensity factor, W 0.566
```

Average weaving speed, SW
46.9
mi/h
Average non-weaving speed, SNW

Limitations on Weaving Segments \qquad
If limit reached, see note.

	Minimum	Maximum	Actual	Note
Weaving length (ft)	300	6105	900	a, b
Density-based capacty,		Maximum	Analyzed	
cIWL (pc/h/ln)	2350	1952	c	
v/cratio			Maximum	Analyzed

Notes:
a. In weaving segments shorter than 300 ft, weaving vehicles are assumed to
make only necessary lane changes.
b. Weaving segments longer than the calculated maximum length should be
treated as isolated merge and diverge areas using the procedures of
Chapter 13, "Freeway Merge and Diverge Segments."
c. The density-based capacity exceeds the capacity of a basic freeway segment,
under equivalent ideal conditions.
d. Volumes exceed the weaving segment capacity. The level of service is F.

Appendix "K"

Collision Diagrams

Appendix "L"

Environmental Screening and Constraint Map

NEW JERSEY DEPARTMENT OF TRANSPORTATION Bureau of Landscape Architecture and Environmental Solutions ENVIRONMENTAL AND LANDSCAPE SCREENING

Revised September 22, 2011

Request Date:	$5 / 6 / 2016$		
Request made by:	Ed D'Arcy		
Project Name:	Rt. 24, EB Ramp to CR 510 (Columbia Turnpike)		
Project Description:	Concept Development Study to alleviate congestion at the intersection of Columbia Turnpike and Park Avenue, an intersection near the ramps from Rt. 24. The study may recommend modifications to the Rt. 24 ramps.		
County and Municipality:	Florham Park Borough, Hanover, and Morris Townships, Morris County - UPC No. 154330 M.P. 2.09		
Project Purpose			\square Improve Vehicular/Driver Safety
Reduce Congestion	\square Economic Development		
\square System Linkage	\square Change to Current Design Standards		
\square Improve Bike/Ped. Capacity or Safety			
\square Other (Describe)			

ENVIRONMENTAL CONSTRAINTS/OPPORTUNITIES:

Cultural Resources	Yes / No
Are there any 50+ year old structures in the project study area?	Y
Are there known buildings or structures on or eligible for the State and /or National Register of Historic Places in the project study area?	N
Is there involvement with a historic bridge or culvert?	N
Is the project located in a known or potential Historic District?	N
Are there any undisturbed areas, old foundations or building rubble in the project study area?	Y
Are there any known archaeological sites or potential underground cultural resources within the project study area?	N
Enhancement Opportunities:	Comments: The Normandy Park Historic District Boundary Increase is located just outside of the project area to the west. SHPO consultation will likely be needed due to scope of work and potential archeological impacts.

Section 4(f) Properties	Yes / No
Are there any recreational facilities within the project study area?	Y
Is there publicly owned open space in the project study area?	Y
Is there a Wildlife Refuge or Wildlife Management Area in the project study area?	Y
Is there a school or school athletic fields in the project study area?	Y
Is there a community park or parkland within the project study area?	N
Is there a historic bridge or historic site in the project area?	N
Enhancement Opportunities:	
Comments: Black Meadows is a wildlife preserve located on the eastern side Route 24. Farleigh Dickinson University is located just south of the project.	

Air/Noise	Yes / No
Are there any sensitive receptors (i.e. residences, schools, hospitals, and churches) within 300 feet of the project?	Y
Will the project change the vertical or horizontal alignment of the roadway?	Y
Does the project provide for a significant increase in vehicle operating speeds of roadway capacity?	Y
Is the project in a non-attainment area for Carbon Monoxide?	N
Is an intersection Carbon monoxide analysis required?	N
Is the project in a non-attainment area for PM2.5?	N
Is a PM2.5 hot-spot analysis required?	N Possibly
Is the project in a non-attainment area for PM10?	N
Is a PM10 hot-spot analysis required?	
Mitigation Opportunities:	Comments: - The project is in a PM 2.5 maintenance area. Traffic data detailing the Level-of-Service will be needed to determine if a hot-spot analysis is needed.
•Due to the potential change in alteration of the highway alignment and the relocation and addition of interchange lanes, and the addition of through traffic lanes, a noise study may be required. • Air/Noise impacts will have to be reevaluated once a more detailed scope of work is available.	

Ecology	Yes / No
Are there any wetlands, floodplains, sole source aquifer, stream crossings, riparian zones, or wildlife habitat in the project study area?	Wetlands, SSA, Wildlife Habitat
Is there any potential for rare, threatened or endangered species or their habitats within the project study area or within a mile downstream of the project study area (where streams are present)?	Y
Is there any potential or known vernal pool habitat within the project study area?	N
Is there a potential need for wildlife crossings in the project area (e.g., pipes, small tunnels, fencing)?	Y
Are there any trout maintenance or trout production streams within the project study area?	N
Are there any Category 1 waters in the project area?	N
Is the project located in a geologic formation(s) associated with acid producing soils?	N
Are there any potential stormwater management mitigation areas in project area or upstream of the project area?	Y
Do Stormwater Management facilities need to be created? If so, are there potential locations within the project limits?	Unknown
Are there any Wild and Scenic Rivers in the project study area?	N
Does Essential Fish Habitat exist in the project study area?	N
Are there any other environmentally-sensitive areas that are possible project design constraints?	N
Describe ecology in the project study area (e.g., heavily forested, urban, residential, etc.): The project area is mostly forested with wetlands, with urban areas along the roadways.	

Comments:

- The Black Meadows Preserve is located within the project area on the southeastern side.
- There are wetlands scattered throughout the project area.
- The project is within the Buried Valley SSA.
- According to the Fish \& Wildlife IPaC tool, Indiana Bat, Northern Long-Eared Bat, and Bog Turtles have the potential to be found within the project area.
- Florham Park, Hanover Twp, and Morris Twp have maternity populations of both the Northern Long-Eared Bat and the Indiana Bat. Hanover Twp and Morris Twp have hibernation populations of the Indiana Bat. If tree clearing is proposed, it cannot occur from April 1 November 15 due to bat populations.
- Black Brook, a Freshwater Category 2 non-trout waterway, crosses Route 24, but does not reach the Park Ave, Columbia Turnpike intersection. If work near Black Brook is needed, a riparian zone of 150 ' may apply.
- According to NJDEP's Species Based Habitat GIS layer, Bald Eagle (State Endangered) may be present in the project area.
- Due to all of the causeways, there may be a need for wildlife crossing amenities.

Potential environmental permits/approvals and interagency coordination	Comments:	
\square	US Coast Guard	
\square	USACOE Section 10	
\square	USACOE Section 404	
\square	NJDEP Freshwater Wetlands	
\square	NJDEP Water Quality Certification	
\square	NJDEP Flood Hazard Area	
\square	NJDEP CAFRA	
\square	NJDEP Coastal Wetlands	
\square	NJDEP Waterfront Development	
\square	NJDEP Tidelands Conveyance	
\square	NJPDES Construction Activity Stormwater GP	
\square	NJDEP Stormwater Management	Will likely be needed, due to disturbance.
\square	PL 2001 Chapter 10 Reforestation	
\square	Pinelands Commission	
\square	D\&R Canal Commission	
\square	Meadowlands Commission	
\square	Essential Fish Habitat	
\square	Category One waters	
\square	USEPA Sole Source Aquifer	
\square	Highland Rules/Preservation Area	
\square	Delaware River Port Authority	
\square		

Comments:

- The majority of the project is within the Highlands Planning Area, Highlands Rules will have to be followed.
- If $1 / 4$ or more of impervious surface is added or if 1 acre or more of land is disturbed then stormwater management will be needed.
- Impacts to wetlands may trigger an individual permit where mitigation might be required.

Landscape Architecture	Yes / No
Is there deforestation taking place in accordance with the No Net Loss Reforestation Act (NNL P.L. 2001 Chapter 10 Reforestation)?	Y
Does existing vegetation need management (e.g., tree trimming, hazardous tree removal, clearing, thinning)?	Y
Will planting need to be included (e.g., commitments, street trees, reforestation)?	Y
Are there Context Sensitive Solutions opportunities (e.g., streetscapes, screenings)?	N
Will vegetative Soil Erosion and Sediment Control Measures need to be included?	Y
Are there Aesthetic Enhancements that need to be addressed?	N
Are any structures proposed (e.g., bridge, retaining walls)?	Y
Do Stormwater Management facilities need to be created?	Possibly
Mitigation Opportunities:	

Socioeconomics	Yes / No
Will the project affect farmland or community facilities?	Unknown
Based on the proposed improvements for this project, will there be possible displacement of businesses or residences?	Y
Will the project affect access to community facilities, bus stop shelters, playgrounds or parks or gardens?	Unknown
Can the project improve bike/ped facilities?	Y
Are there any observable safety (e.g. ADA compliant) issues or concerns in the project study area?	Unknown
Does project have potential for socioeconomic impacts? If YES provide US Census data in comments.	Unknown
Does project have potential for Environmental Justice involvement? If YES provide US Census data in comments.	N

Comments: There are 55 people within the project area. 14% of that population is considered to be a minority with 7% being Asian, 4% Hispanic, and 2% Black. 83% of the population has a household income of $\$ 75,000$ or higher. This does not appear to be an Environmental Justice community.

Hazardous Waste	Yes / No
Are there any known or suspected hazardous waste sites (UST, landfills, known NJDEP Case, ECRA Case), within the project study area?	Y
Are there active or abandoned industries, service stations or repair shops within the project study area?	N
Is there evidence of potential contamination (monitoring wells, stained soils, etc.)?	Y
Are railroads or railyards located in the project study area?	N

Enhancement Opportunities:
Comments: Since there are active NJDEP enforcement cases and historic fill within the project area, there is a potential for involvement with regulated material or contaminated sites. Once more specific project plans are available, then a reevaluation will be made to determine whether environmental investigation will be required.

Environmental Screening Summary:

- The Normandy Park Historic District Boundary Increase is located just outside of the project area to the west. SHPO consultation will likely be needed due to scope of work and potential archeological impacts.
- The project is in a PM 2.5 maintenance area. Traffic data detailing the Level-of-Service will be needed to determine if a hot-spot analysis is needed.
- Due to the potential change in alteration of the highway alignment and the relocation and addition of interchange lanes, and the addition of through traffic lanes, a noise study may be required. Air/Noise impacts will have to be reevaluated once a more detailed scope of work is available.
- The Black Meadows Preserve is located within the project area on the southeastern side.
- There are wetlands scattered throughout the project area.
- According to the Fish \& Wildlife IPaC tool, Indiana Bat, Northern Long-Eared Bat, and Bog Turtles have the potential to be found within the project area.
- Due to bat presence, if tree clearing is proposed, it cannot occur from April 1 - November 15 due to bat populations.
- Black Brook, a Freshwater Category 2 non-trout waterway, crosses Route 24, but does not reach the Park Ave, Columbia Turnpike intersection. If work near Black Brook is needed, a riparian zone of 150' may apply.
- According to NJDEP's Species Based Habitat GIS layer, Bald Eagle (State Endangered) may be present in the project area.
- Due to all of the causeways, there may be a need for wildlife crossing amenities. The majority of the project is within the Highlands Planning Area, Highlands Rules will have to be followed.
- If $1 / 4$ or more of impervious surface is added or if 1 acre or more of land is disturbed then stormwater management will be needed.
- Impacts to wetlands may trigger an individual permit where mitigation might be required.
- Due to the presence of active NJDEP enforcement cases and historic fill, there is a potential for involvement with regulated material or contaminated sites. Once more specific project plans are available, then a reevaluation will be made to determine whether environmental investigation will be required.

Prepared \& Recommended By:

Route 24, EB Ramp to CR 510 (Columbia Turnpike) Hanover and Morris Townships, Morris County Environmental Constraints Map

Location: User-specified polygonal location
Ring (buffer): 0 -mile radius
Description: Route 24

Summary		Census 2010
Population		55
Population Density (per sq. mile)		250
Minority Population		8
\% Minority		14\%
Households		17
Housing Units		18
Land Area (sq. miles)		0.22
\% Land Area		99\%
Water Area (sq. miles)		0.00
\% Water Area		1\%
Population by Race	Number	Percent
Total	55	-------
Population Reporting One Race	54	99\%
White	49	89\%
Black	1	2\%
American Indian	0	0\%
Asian	4	7\%
Pacific Islander	0	0\%
Some Other Race	0	0\%
Population Reporting Two or More Races	1	1\%
Total Hispanic Population	2	4\%
Total Non-Hispanic Population	53	96\%
White Alone	47	86\%
Black Alone	1	2\%
American Indian Alone	0	0\%
Non-Hispanic Asian Alone	4	7\%
Pacific Islander Alone	0	0\%
Other Race Alone	0	0\%
Two or More Races Alone	1	1\%
Population by Sex	Number	Percent
Male	26	47\%
Female	29	53\%
Population by Age	Number	Percent
Age 0-4	3	6\%
Age 0-17	13	23\%
Age 18+	42	77\%
Age 65+	12	23\%
Households by Tenure	Number	Percent
Total	17	
Owner Occupied	16	92\%
Renter Occupied	1	8\%

Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race.
Source: U.S. Census Bureau, Census 2010 Summary File 1.

Location: User-specified polygonal location
Ring (buffer): 0-mile radius
Description: Route 24

Summary	Census $\mathbf{2 0 0 0}$
Population	355
Population Density (per sq. mile)	2,727
Minority Population	36
\% Minority	10%
Households	133
Housing Units	139
Housing Units Built Before 1950	18
Land Area (sq. miles)	0.13
\% Land Area	100%
Water Area (sq. miles)	0.00
\% Water Area	0%

Population by Race	Number	Percent
Total	355	------
Population Reporting One Race	352	99%
White	325	92%
Black	3	1%
American Indian	0	0%
Asian	21	6%
Pacific Islander	0	0%
Some Other Race	2	0%
Population Reporting Two or More Races	3	1%
Total Hispanic Population	8	2%

Population by Sex	Number	Percent
Male	160	45%
Female	195	55%

Population by Age	Number	Percent
Age 0-4	25	7%
Age 0-17	70	20%
Age 18+	285	80%
Age $65+$	75	21%

Population 25+ by Educational Attainment	Number
Total	264
Less than 9th Grade	8
9th - 12th Grade, No Diploma	13
High School Graduate	42
Some College, No Degree	33
Associate Degree	9

[^3]Location: User-specified polygonal location
Ring (buffer): 0-mile radius
Description: Route 24

Population Age 5+ Years by Ability to Speak English	Number	Percent
Total	334	-------
Speak only English	270	81\%
Non-English at Home	64	19\%
Speak English "very well"	44	13\%
Speak English "well"	15	4\%
Speak English "not well"	5	1\%
Speak English "not at all"	0	0\%
Speak English "less than well"	5	2\%
Households by Household Income in 1999	Number	Percent
Household Income Base	133	-------
< \$15,000	6	5\%
\$15,000-\$25,000	8	6\%
\$25,000-\$50,000	23	17\%
\$50,000-\$75,000	17	13\%
\$75,000 +	79	60\%
Households by Tenure	Number	Percent
Total	133	-------
Owner Occupied	110	83\%
Renter Occupied	23	17\%

[^4]
EJSCREEN ACS Summary Report

Location: User-specified polygonal location
Ring (buffer): 0-mile radius
Description: Route 24

	2008-2012 ACS Estimates	Percent	MOE (\pm)
Population 25+ by Educational Attainment			
Total	43	100\%	251
Less than 9th Grade	0	1\%	24
9th - 12th Grade, No Diploma	0	1\%	27
High School Graduate	6	14\%	116
Some College, No Degree	6	13\%	138
Associate Degree	2	4\%	109
Bachelor's Degree or more	30	71\%	229
Population Age 5+ Years by Ability to Speak English			
Total	55	100\%	413
Speak only English	50	91\%	398
Non-English at Home ${ }^{1+2+3+4}$	5	9\%	170
${ }^{1}$ Speak English "very well"	3	5\%	117
${ }^{2}$ Speak English "well"	2	3\%	71
${ }^{3}$ Speak English "not well"	0	0\%	27
${ }^{4}$ Speak English "not at all"	0	0\%	37
${ }^{3+4}$ Speak English "less than well"	0	0\%	44
${ }^{2+3+4}$ Speak English "less than very well"	2	4\%	83
Linguistically Isolated Households*			
Total	0	100\%	29
Speak Spanish	0	0\%	20
Speak Other Indo-European Languages	0	73\%	22
Speak Asian-Pacific Island Languages	0	27\%	12
Speak Other Languages	0	0\%	12
Households by Household Income			
Household Income Base	19	100\%	171
< \$15,000	1	4\%	29
\$15,000-\$25,000	1	3\%	89
\$25,000-\$50,000	1	5\%	92
\$50,000-\$75,000	1	5\%	103
\$75,000 +	16	83\%	175
Occupied Housing Units by Tenure			
Total	19	100\%	171
Owner Occupied	18	95\%	104
Renter Occupied	1	5\%	156

Location: User-specified polygonal location
Ring (buffer): 0 -mile radius
Description: Route 24

	$\begin{array}{r} \text { 2008-2012 } \\ \text { ACS Estimates } \end{array}$	Percent	MOE (\pm)
Population by Language Spoken at Home **			
Total (persons age 5 and above)	55	100\%	413
English	N/A	N/A	N/A
Spanish	N/A	N/A	N/A
French	N/A	N/A	N/A
French Creole	N/A	N/A	N/A
Italian	N/A	N/A	N/A
Portuguese	N/A	N/A	N/A
German	N/A	N/A	N/A
Yiddish	N/A	N/A	N/A
Other West Germanic	N/A	N/A	N/A
Scandinavian	N/A	N/A	N/A
Greek	N/A	N/A	N/A
Russian	N/A	N/A	N/A
Polish	N/A	N/A	N/A
Serbo-Croatian	N/A	N/A	N/A
Other Slavic	N/A	N/A	N/A
Armenian	N/A	N/A	N/A
Persian	N/A	N/A	N/A
Gujarathi	N/A	N/A	N/A
Hindi	N/A	N/A	N/A
Urdu	N/A	N/A	N/A
Other Indic	N/A	N/A	N/A
Other Indo-European	N/A	N/A	N/A
Chinese	N/A	N/A	N/A
Japanese	N/A	N/A	N/A
Korean	N/A	N/A	N/A
Mon-Khmer, Cambodian	N/A	N/A	N/A
Hmong	N/A	N/A	N/A
Thai	N/A	N/A	N/A
Laotian	N/A	N/A	N/A
Vietnamese	N/A	N/A	N/A
Other Asian	N/A	N/A	N/A
Tagalog	N/A	N/A	N/A
Other Pacific Island	N/A	N/A	N/A
Navajo	N/A	N/A	N/A
Other Native American	N/A	N/A	N/A
Hungarian	N/A	N/A	N/A
Arabic	N/A	N/A	N/A
Hebrew	N/A	N/A	N/A
African	N/A	N/A	N/A
Other and non-specified	N/A	N/A	N/A
Total Non-English	N/A	N/A	N/A

Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race. N/A means not available.
Source: U.S. Census Bureau, American Community Survey (ACS) 2008-2012.
**Population by Language Spoken at Home is available at the census tract summary level and up.

EJSCREEN Report

 for the User Specified Area, NEW JERSEY, EPA Region 2Approximate Population: 59

Route 24

Selected Variables	State Percentile		EPA Region Percentile	
EJ Indexes		USA Percentile		
EJ Index for PM2.5	20	14	15	
EJ Index for Ozone	20	14	15	
EJ Index for NATA Diesel PM*	N / A	N / A	N / A	
EJ Index for NATA Air Toxics Cancer Risk*	N / A	N / A	N / A	N / A
EJ Index for NATA Respiratory Hazard Index*	N / A	N / A	N / A	
EJ Index for NATA Neurological Hazard Index*	1	2	$\mathrm{~N} / \mathrm{A}$	
EJ Index for Traffic Proximity and Volume	16	18	0	
EJ Index for Lead Paint Indicator	28	18	7	
EJ Index for Proximity to NPL sites	48	40	8	
EJ Index for Proximity to RMP sites	22	13	44	
EJ Index for Proximity to TSDFs	1	2	14	
EJ Index for Proximity to Major Direct Dischargers		1		

[^5]
EJSCREEN Report

for the User Specified Area, NEW JERSEY, EPA Region 2

Approximate Population: 59

Route 24

for the User Specified Area, NEW JERSEY, EPA Region 2

Approximate Population: 59
Route 24

Selected Variables	Raw Data	State Avg.	\%ile in State	EPA Region Avg.	\%ile in EPA Region	USA Avg.	\%ile in USA
Environmental Indicators							
Particulate Matter (PM 2.5 in $\mu \mathrm{g} / \mathrm{m}^{3}$)	9.4	10	27	9.94	38	9.78	36
Ozone (ppb)	45.9	46.9	41	44.7	66	46.1	46
NATA Diesel PM $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)^{*}$	N/A						
NATA Cancer Risk (lifetime risk per million)*	N/A						
NATA Respiratory Hazard Index*	N/A						
NATA Neurological Hazard Index*	N/A						
Traffic Proximity and Volume (daily traffic count/distance to road)	290	130	88	160	86	110	91
Lead Paint Indicator (\% Pre-1960 Housing)	0.39	0.43	45	0.53	33	0.3	66
NPL Proximity (site count/km distance)	0.1	0.28	28	0.19	47	0.096	76
RMP Proximity (facility count/km distance)	0.03	0.21	4	0.18	6	0.31	5
TSDF Proximity (facility count/km distance)	0.029	0.11	38	0.058	50	0.054	58
Water Discharger Proximity (facility count/km distance)	0.91	0.29	93	0.36	89	0.25	95
Demographic Indicators							
Demographic Index	9\%	32\%	11	35\%	9	35\%	6
Minority Population	10\%	41\%	17	41\%	24	36\%	26
Low Income Population	7\%	23\%	20	29\%	13	34\%	8
Linguistically Isolated Population	1\%	7\%	32	8\%	35	5\%	49
Population With Less Than High School Education	2\%	12\%	10	14\%	9	14\%	9
Population Under 5 years of age	6\%	6\%	59	6\%	60	7\%	54
Population over 64 years of age	25\%	14\%	92	14\%	92	13\%	92

* The National-scale Air Toxics Assessment (NATA) environmental indicators and EJ indexes, which include cancer risk, respiratory hazard, neurodevelopment hazard, and diesel particulate matter will be added into EJSCREEN during the first full public update after the soon-to-be-released 2011 dataset is made available. The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: http://www.epa.gov/ttn/atw/natamain/index.html.

For additional information, see: www.epa.gov/environmentaljustice

[^6]
Appendix " \mathbf{M} "

Alternatives, Right of Way Impacts, Environmental Constraints

Appendix " N "

Public Communications / Utility Communications

Route 24, Columbia Turnpike and Park Avenue Interchange Improvements Morris Township, Borough of Florham Park and Hanover Township, Morris County

> Public Information Center (PIC)

Introduction

A virtual Public Information Center (PIC) was held for the Route 24, Columbia Turnpike and Park Avenue Interchange Improvements project from November 30, 2020 to December 14, 2020 to allow the public to view the Preliminary Preferred Alternative (PPA) and if desired, to provide comments. Due to the declared COVID-19 Public Health Emergency and State of Emergency, and in order to maintain recommended social distancing practices, it was determined that the PIC would be conducted in a virtual format.

Information was posted on the New Jersey Department of Transportation (NJDOT) website to provide notice to the public about the virtual PIC for the project.

The virtual PIC included a project handout, narrated video presentation, and feedback survey. The project handout, a copy of which is shown in Appendix A, provided a summary of the proposed improvements and anticipated design schedule. The handout also provided an individual to contact in the NJDOT's Office of Community Relations for further information or to provide comments. The narrated video presentation provided a visual and audible description of the proposed improvements. A PDF copy of the presentation is shown in Appendix B. After viewing the handout and video, visitors to the PIC were encouraged to participate in a survey, a copy of which is shown in Appendix C, to provide their comments and / or concerns.

Information regarding the virtual PIC was provided to municipal and county officials. The project handout was sent via US Mail to residences, businesses, and utility owners located within 250 feet of the project limits. The mailing list is shown in Appendix D.

The virtual PIC was advertised on the Florham Park Police Department and Office of Emergency Management Facebook page and in several news outlets. Copies of these notices and articles are shown in Appendix E. The readers were encouraged to view the virtual PIC presentation and participate in the survey after viewing the presentation.

PIC Survey Responses

During the two weeks that the virtual PIC was active on the website, there were 3,764 visitors to the website and NJDOT had received 122 survey responses. Eleven additional responses were received via email. A tabulation of the responses received are shown in Appendix F. Of the 133 total responses
received, 81 were in support of the project, 40 did not support the project and 12 did not indicate a preference. Resolutions of support for the project have not yet been received from the municipalities. At the conclusion of this Concept Development Phase, Morris County will manage the project and be responsible for Preliminary and Final Design.

A summary of Frequently Asked Questions and NJDOT's Responses were posted to the web page on December 18, 2020 and are as follows:

1. Can improvements be made to the Route $\mathbf{2 4}$ Mainline?

The project Purpose and Need is to provide relief from congestion and reduce the number of vehicle crashes at the intersection of Columbia Turnpike and Park Avenue. The scope of this project does not address improvements to weaving or traffic flow on Route 24. Guide signing will be changed to reroute Route 24 motorists to the new proposed ramp. Exit numbers will not change.
2. Why not build a ramp to the business complexes via Campus Drive, NY Jets training facility and locations further south where the cars are heading anyway?
Per the NJDOT Roadway Design Manual the minimum spacing for interchanges should be at least 1 mile between urban crossroads. Campus Drive is 0.3 miles and the Jets training facility is 0.8 miles from the interchange at Columbia Turnpike. If Campus Drive was converted to a ramp, vehicular access would have to be denied to the office complex from the ramp.

3. Can the existing ramp from Columbia Turnpike Eastbound to Route $\mathbf{2 4}$ Eastbound remain?

In order to provide relief from congestion and reduce delays at the Columbia Turnpike and Park Avenue intersection, the existing ramp from Columbia Turnpike Eastbound to Route 24 Eastbound will be closed and traffic will be directed to the new proposed ramp via two yield controlled right turn lanes from Columbia Turnpike Eastbound to Park Avenue Southbound. Two left turn lanes will also be provided from Park Avenue Southbound to the new proposed ramp.
4. The design eliminates the turn left from our neighborhood (Delaware and Prescott), onto Park Avenue. Why not build the new ramp at the existing Prescott Road intersection?
In the original Preliminary Preferred Alternative, the proposed ramp between Park Avenue and Route 24 Eastbound was aligned opposite Prescott Road at a new signalized intersection. Because of a local approval for the construction of the Marriot Hotel, the Preliminary Preferred Alternative was revised and the proposed ramp was relocated.

5. How will the new curbed island on Columbia Turnpike Westbound affect traffic?

The curbed island will be provided on Columbia Turnpike Westbound to relieve congestion and reduce the number of vehicle crashes at the intersection with Park Avenue. Motorists on Route 24 Eastbound will be rerouted to the next exit and use the new proposed ramp to reach Park Avenue. To be clear, traffic exiting Route 24 Westbound and traffic coming from Florham Park on Columbia Turnpike Westbound will be able to use the left turn lanes, through lanes or right turn lane at Park Avenue.
6. When were traffic counts taken? Did COVID affect traffic counts?

The traffic counts at the intersection of Columbia Turnpike and Park Avenue were taken in October 2019 prior to COVID. These volumes were then projected to 2020 using a growth factor for the area as a matter of standard practice.
7. How will traffic be improved if a new signalized intersection will be added for the new ramp?

As indicated in the presentation, the existing traffic delays at the intersection of Columbia Turnpike and Park Avenue can be as high as 8 minutes. The traffic analysis performed for this study show that rerouting the Route 24 Eastbound traffic to the new proposed ramp along with the additional intersection upgrades and timing modifications will reduce these delays by 3 to 6 minutes.

Appendix A

www.dewberry.com

Virtual Public Information Center

November 30, 2020 through December 14, 2020
Route 24, Columbia Turnpike and Park Avenue Interchange Improvements Morris Township, Borough of Florham Park and Hanover Township
Morris County, New Jersey

The New Jersey Department of Transportation (NJDOT), committed to developing transportation improvements that best balance transportation needs, the environment, community concerns and costs, will hold a Virtual Public Information Center (PIC) to provide local residents and businesses with information on the Route 24, Columbia Turnpike and Park Avenue Interchange Improvements. You are encouraged to actively participate by providing comments at the end of the presentation by mail or e-mail.

The Presentation

Due to the COVID-19 Public Health Emergency, the Public Information Center will be conducted virtually at the following website:

https://www.dewberry.com/njdot-rt24-columbiatpk-parkave-interchange

Please view the presentation at a time that is convenient for you between November 30, 2020 and December 14, 2020. The purpose of the presentation is to provide information about the proposed improvements at the Route 24, Columbia Turnpike and Park Avenue Interchange. After the presentation, you will have an opportunity to submit comments to the NJDOT. Property owners with rental units are advised that tenants are also invited and encouraged to participate.

Background

Traffic exiting Route 24 Eastbound for Columbia Turnpike Westbound is forced to weave across heavy traffic on Columbia Turnpike Westbound to make a left turn onto Park Avenue Southbound. Weaving is causing accidents, delays at the Columbia Turnpike/Park Avenue signalized intersection and back-ups onto Route 24 during the morning peak hours.

The Proposed Project

NJDOT determined that a new ramp will be constructed to connect Route 24 Eastbound to and from Park Avenue at a new signalized T-intersection located south of the Columbia Turnpike/Park Avenue intersection. This new two-way ramp will connect to the existing ramps to and from Route 24

Eastbound and Columbia Turnpike Eastbound. The existing ramps will be modified.

New signing will direct Route 24 Eastbound drivers bound for Park Avenue Southbound to stay on the highway and take the next exit (Columbia Turnpike Eastbound) to access the new ramp to Park Avenue. This will eliminate weaving on Columbia Turnpike Westbound and reduce accidents and delays at the Columbia Turnpike/Park Avenue intersection.

A physical separator such as a curbed island will be constructed on Columbia Turnpike Westbound to prevent exiting traffic from Route 24 Eastbound from weaving across traffic to the left. Drivers will have the option of staying on Columbia Turnpike or turning right onto Park Avenue Northbound.

The existing ramp from Columbia Turnpike Eastbound to Route 24 Eastbound will be closed and signing will direct drivers to use the new ramp connection on Park Avenue. To accommodate the increase in traffic from Columbia Turnpike Eastbound to Park Avenue Southbound, two right turn lanes will be provided at the Columbia Turnpike/Park Avenue intersection.

Anticipated Schedule

- Concept Development Phase complete: Winter 2021
- Preliminary Engineering Phase begins: Fall 2021

For further information, please contact:

Anthony Sytko, Regional Coordinator
New Jersey Department of Transportation Office of Community Relations
PO Box 600, Trenton, NJ 08625-0600
Phone: 609-963-1992
E-mail: Anthony.Sytko@dot.nj.gov

Appendix B

www.dewberry.com

Route 24, Columbia Turnpike and Park Avenue Interchange Improvements

Virtual Public Information Center
November 30, 2020

Route 24, Columbia Tpk./Park Ave.| November 30, 2020

Project Schedule

Current Phase
By NJDOT

Phase
By County

Phase
By County

Feedback

Take the survey and submit comments at the following website:
 https://www.dewberry.com/nidot-rt24-columbiatpk-parkaveinterchange

Questions can be submitted via email to NJDOT at: Anthony.Sytko@dot.ni.gov

Appendix C

www.dewberry.com

NJDOT Route 24, Columbia Turnpike and Park Avenue Interchange
 Public Information Center Survey

1. Contact Information (Optional)

By providing contact information, you will be added to the mailing list for Route 24, Columbia Turnpike and Park Avenue Interchange

Name

Address \square
Email Address \square
Phone Number \square
2. To help us better understand your interest in the project, please indicate your affiliation:

ResidentBusiness

Municipal/Government
Utility
Other:

3. Do you live or work in the project area?

Yes - please indicate where in the comment field below.

Comments:

4. Are you supportive of the project as it is shown in the presentation?

Yes

No

Comments:

5. If you have any questions regarding the project, please provide them below.

Q1: \square
Q2:
Q3:

Q4:
Q5:

6. Please provide any other comments below.

NJDOT Route 24, Columbia Turnpike and Park Avenue Interchange
 THANK YOU FOR YOUR PARTICIPATION!

If you have any remaining questions or comments regarding this project, please submit them by email to Anthony.Sytko@dot.nj.gov

Appendix D

www.dewberry.com

Sr.No	Owner Name	Mailing Address	Street Address	Block	Lot
1	FORTE, JOHN J. JR \& MARY BETH	7 ACADEMY RD, MADISON, NJ 07940	35 PARK AVE, MADISON, NJ 07940	1101	2
2	CHIAROLANZIO, DAVID \& DANIELLE	37 PARK AVE, MADISON, NJ 07940	37 PARK AVE, MADISON, NJ 07940	1101	3
3	DE CARO, CARMINE J	41 PARK AVE, MADISON, NJ 07940	41 PARK AVE, MADISON, NJ 07940	1101	4
4	AMBROSIANO, THEODORE	45 PARK AVE, MADISON, NJ 07940	45 PARK AVE, MADISON, NJ 07940	1101	5
5	SANGILLO, STEVEN	195 PARK AVE, MADISON, NJ 07940	47 PARK AVE, MADISON, NJ 07940	1101	6
6	AMALGAMATED \& CONSOLIDATED LLC	25-27 DICKERSON ST, DOVER, NJ 07801	49 PARK AVE, MADISON, NJ 07940	1101	7
7	ALVEY, DAVID	17 LAKE TRAIL WEST, HARDING, NJ 07960	57 PARK AVE, MADISON, NJ 07940	1101	8
8	PISCIOTTO, JAMES \& JACQUELINE S	14 CORN HILL DR, MORRISTOWN, NJ 07960	61 PARK AVE, MADISON, NJ 07940	1101	9
9	ALVEY, DAVID	17 LAKE TRAIL WEST, HARDING, NJ 07960	65 PARK AVE, MADISON, NJ 07940	1101	10
10	DECARO, UMBERTO	69 PARK AVE, MADISON, NJ 07940	69 PARK AVE, MADISON, NJ 07940	1101	11
11	PICONE, PAUL C \& TONI M	211 PARK AVE, MADISON, NJ 07940	211 PARK AVE, MADISON, NJ 07940	1101	12
12	GORZELNIK, LAWRENE M	14 DELAWARE RD MORRISTOWN, NJ 07960	14 DELAWARE RD MORRISTOWN, NJ 07960	1101	13
13	BUNETA, ANDRO \& JENNIFER	12 DELAWARE RD MORRISTOWN, NJ 07960	12 DELAWARE RD MORRISTOWN, NJ 07960	1101	14
14	ALTMAN, SCOTT \& ENRICHETTA	10 DELAWARE RD MORRISTOWN, NJ 07960	10 DELAWARE RD MORRISTOWN, NJ 07960	1101	15
15	MC HUGH, JAMES R \& SUSAN B	8 DELAWARE RD MORRISTOWN, NJ 07960	8 DELAWARE RD MORRISTOWN, NJ 07960	1101	16
16	RICCIARDELLI, STEVEN \& MARLO	6 DELAWARE RD MORRISTOWN, NJ 07960	6 DELAWARE RD MORRISTOWN, NJ 07960	1101	17
17	BIALOS, STEVEN/NUNEZ, SCORPIO	2 DELAWARE RD MORRISTOWN, NJ 07960	2 DELAWARE RD MORRISTOWN, NJ 07960	1101	18
18	JAMES H DOWDY III	15 DELAWARE RD MORRISTOWN, NJ 07960	PARK AVE \& DELAWARE	1105	2
19	MILLMORE, ANNE O. (TRUSTEE)	215 PARK AVE MORRISTOWN, NJ 07960	PARK AVE	1105	3
20	ADVANCE AT PARK\%SLK GLOBAL SOLUTION	2727 LBJ FREEWAY STE 806, DALLAS, TX 75234	220 PARK AVE FLORHAM PARK, NJ 07932	1201	1
21	ADVANCE AT PARK\%SLK GLOBAL SOLUTION	2727 LBJ FREEWAY STE 806, DALLAS, TX 75234	200 PARK AVE FLORHAM PARK, NJ 07932	1201	2
22	VILLA AT FLORHAM PARK INC	3 MANHATTAN DR BURLINGTON, NJ 08016	190 PARK AVE FLORHAM PARK, NJ 07932	1201	3
23	WOODFIELD ESTATES @ FLORHAM PARK	39 MAIN ST CHATHAM, NJ 07932	188 PARK AVE FLORHAM PARK, NJ 07932	1201	4
24	KBSII 100-200 CAMPUS DRIVE LLC	100 CAMPUS DR,1F-\%T LYNCH FLORHAM PARK, NJ 07932	200 CAMPUS DR FLORHAM PARK, NJ 07932	1201	5
25	KBSII 300-600 CAMPUS DRIVE LLC	100 CAMPUS DR,1F-\%T LYNCH FLORHAM PARK, NJ 07932	300 CAMPUS DR FLORHAM PARK, NJ 07932	1201	6
26	KBSII 100-200 CAMPUS DRIVE LLC	100 CAMPUS DR,1F-\%T LYNCH FLORHAM PARK, NJ 07932	100 CAMPUS DR FLORHAM PARK, NJ 07932	1201	7
27	PARK AVENUE FOUNDATION INC	184 PARK AVE FLORHAM PARK, NJ 07932	184 PARK AVE FLORHAM PARK, NJ 07932	1201	8
28	TEXAS EASTERN TRANSMISSION CORP	P.O.BOX 2629, ADDISON, TEXAS 75001	34 COLUMBIA RD	4801	6,7.8
29	LSREF3 AH CHICAGO LLC\% RYAN, LLC	600 FIFTH AVE, 9TH FLOOR, NEW YORK, NY 10020	194 PARK AVE FLORHAM PARK, NJ 07932	4802	1
30	CEDAR KNOLLS ONE LLC	80 S JEFFERSON RD, \#202, WHIPPANY, NJ 07981	190 PARK AVE FLORHAM PARK, NJ 07932	4802	2
31	RAVINE DEVELOPMENT CO LLC	P.O. BOX 298, SPRINGFIELD, NJ 07081	10 PARK AVE	4902	1
32	COLUMBIA EXECUTIVE PLAZA ASSOC.	820 MORRIS TPK.SUITE 301, HORT HILLS, N.J. 07078	COLUMBIA ROAD, OFF	4902	2
33	SOUTHEAST MORRIS CTY MUN UTIL AUTH	19 SADDLE RD, CEDAR KNOLLS, NJ 07927	29 COLUMBIA RD	4903	1
34	HONEYWELL,INC., ATT: RAY MERCHANT	115 TABOR RD. MORRIS PLAINS, NJ 07950	101 COLUMBIA RD	9101	4
35	BOLCAR, STEPHEN \& SALLY A	88 NO JEFFERSON RD WHIPPANY, NJ 07981	88 NO JEFFERSON RD WHIPPANY, NJ 07981	9201	1
36	ANTONIELLO, JOSEPH R/CAROL	29 NYE AVE WHIPPANY, NJ 07981	29 NYE AVE WHIPPANY, NJ 07981	9201	2
37	MARINO, ANNA F	111 NO JEFFERSON RD WHIPPANY, NJ 07981	9 LILLIAN PL WHIPPANY, NJ 07981	9201	3
38	LETIZIA, RONALD JR/BETH ANN	25 NYE AVE WHIPPANY, NJ 07981	25 NYE AVE WHIPPANY, NJ 07981	9201	4
39	BAKA, JOHN A/CAROL M/ET ALS	19 NYE AVE WHIPPANY, NJ 07981	19 NYE AVE WHIPPANY, NJ 07981	9201	5
40	MORETTI,FRANK R. JR. \& PATRICIA	15 NYE AVE WHIPPANY, NJ 07981	15 NYE AVE WHIPPANY, NJ 07981	9201	6
41	WANG, ALICE M	11 NYE AVE WHIPPANY, NJ 07981	11 NYE AVE WHIPPANY, NJ 07981	9201	7
42	MIHALKO, MICHAEL \& ANDREA	7 NYE AVE WHIPPANY, NJ 07981	7 NYE AVE WHIPPANY, NJ 07981	9201	8
43	BARCELLONA, GAETANO	1101 APPLETON WAY WHIPPANY, NJ 07981	78 NO JEFFERSON RD	9201	9
44	DOYLE, DAVID \& DANIELLE	72 NO JEFFERSON RD, WHIPPANY, NJ 07981	72 NO JEFFERSON RD, WHIPPANY, NJ 07981	9201	10
45	PURDUE, MICHAEL/DENISE/ASHLEY	68 NO JEFFERSON RD, WHIPPANY, NJ 07981	68 NO JEFFERSON RD, WHIPPANY, NJ 07981	9201	11
46	MILLMORE, ANNE O TRUSTEE	215 PARK AVE, MORRISTOWN, NJ 07960	215 PARK AVE, MORRISTOWN, NJ 07960	9201	12
47	LAKE, ROLAND \& ELEANOR	3 NYE AVE WHIPPANY, NJ 07981	3 NYE AVE WHIPPANY, NJ 07981	9201	15
48	GANCARZ, ADAM/ELIZBIETA	183 PARSIPPANY RD WHIPPANY, NJ 07981	183 PARSIPPANY RD WHIPPANY, NJ 07981	9202	1
49	HEUVERKAMP, DIRK \& MAFALDA	179 PARSIPPANY RD WHIPPANY, NJ 07981	179 PARSIPPANY RD WHIPPANY, NJ 07981	9202	2
50	ORFANAKOS, GEORGE T \& MARIA	175 PARSIPPANY RD WHIPPANY, NJ 07981	175 PARSIPPANY RD WHIPPANY, NJ 07981	9202	3
51	BRUNNER, FRED C THIRD	9 KITCHELL PL WHIPPANY, NJ 07981	163 PARSIPPANY RD WHIPPANY, NJ 07981	9202	4
52	GRAVES, WILLIAM \& ALICE	5 WOODLAND AVE WHIPPANY, NJ 07981	10 WOODLAND AVE WHIPPANY, NJ 07981	9202	5
53	JCP\&L ATT:FIRSTENERGY SERVICE CO	JCP\&L ATT:FIRSTENERGY SERVICE CO PO BOX 4747 OAKBROOK, IL 60522	24 WOODLAND AVE WHIPPANY, NJ 07981	9202	6
54	BOURGEOIS, DONNYELL	34 WOODLAND AVE WHIPPANY, NJ 07981	34 WOODLAND AVE WHIPPANY, NJ 07981	9202	7
55	GRAVEMAN, RICHARD FRED \& SUSAN H	15 PARK AVE, CONVENT, NJ 07960	15 PARK AVE, CONVENT, NJ 07960	9502	6
56	JP PICONE III TRUST \& JP PICONE III	11 PARK AVE, MORRISTOWN, NJ 07960	11 PARK AVE, MORRISTOWN, NJ 07960	9502	5
57	MERCER, PAUL A \& JOY M	5010 THOMAS BERRY WAY, CHAPEL HILL, NC 27516	9 PARK AVE, MORRISTOWN, NJ 07960	9502	4
58	JOSEPH, HAROLD N \& SYLITA	592 NW 135 TER, PLANTATION, FL 33325	5 PARK AVE, MORRISTOWN, NJ 07960	9502	3
59	BROCKWELL, SHANE \& DEGREZIA, DALENA	118 COLUMBIA RD, MORRISTOWN, NJ 07960	118 COLUMBIA RD, MORRISTOWN, NJ 07960	9502	2
60	BELL ATLANTIC \%DUFF \& PHELPS	PO BOX 2749, ADDISON,TX 75001	3 PARK AVE/COLUMBIA RD	9502	1
61	OPPENHEIMER, JOHN \& NALLET, CORINNE	112 COLUMBIA RD, MORRISTOWN, NJ 07960	112 COLUMBIA RD, MORRISTOWN, NJ 07960	9502	7
62	PEREZ, PACIFICO B \& EVELYN C	114 COLUMBIA RD, CONVENT, NJ 07960	114 COLUMBIA RD, CONVENT, NJ 07960	9502	8
63	DEEPU, ARIFUR \& RAHMAN, ZAKIA	2 WYNDMOOR DR CONVENT, NJ 07960	2 WYNDMOOR DR CONVENT, NJ 07960	9502	9
64	KELLY, JENNIFER WIGFIELD	4 WYNDMOOR DR, CONVENT, NJ 07960	4 WYNDMOOR DR, CONVENT, NJ 07960	9502	10
65	Steve W. Williams, Administrator	Borough of Chatham 54 Fairmount Avenue Chatham, NJ 07928			NP
66	Brian K. Gibbons, \quad Police of	Borough of Chatham 54 Fairmount Avenue Chatham, NJ 07928			NP
67	Raymond M. Codey, Adminstrator	Borough of Madison Hartley Dodge Memorial Building 50 Kings Road, Madison, NJ 07940			NP
68	Darren P. Dachisen Sr. \quad Police	Borough of Madison Hartley Dodge Memorial Building 50 Kings Road, Madison, NJ 07940			NP
69	Timothy Quinn Administrator	Morris Township 50 Woodland Avenue, P.O. Box 7603 Convent Station, NJ 07961			NP

Appendix E

www.dewberry.com

Route 24, Columbia Turnpike and Park Avenue Interchange Improvements

 Virtual PIC Online Advertisements
Morristown

https://morristowngreen.com/2020/12/03/dot-proposing-changes-to-columbia-turnpike-park-avenue-interchange-public-comments-through-dec-14/

MorrlstownGreen.com

$$
\text { ADVERIS: } A \text { b }
$$

News- Sthook Sports Videos- CONTRBBUTE

DOT proposing changes to Columbia
Turnpike/Park Avenue interchange; public comments through Dec. 14

By Kevin Coughlin - Dezember 3,2020

Tapinto

https://www.tapinto.net/articles/proposed-improvements-to-rt-24-on-and-off-access-in-florham-park

Florham Park PD Facebook Page
https://www.facebook.com/pg/FlorhamparkPD/posts/

NJDOT

https://www.state.nj.us/transportation/community/meetings/

Active/Upcoming Public Meetings	
'NA'NA'	
Date:	From: Tuesday, November 24, 2020 at 02:26:00 PM To: Friday, December 11, 2020 at 02:26:00 PM
Topic:	Rt 36 Thompson Ave
Meeting	Public Information Center - Information (pdf)
Type:	Click for PIC Web Site - Web Site
Location:	
Topic:	
Date:	From: Monday, November 30, 2020 at 03:21:00 PM To: Monday, December 14, 2020 at 03:21:00 PM
Topic:	Rt. 24/Columbia Turnpike Interchange
Meeting	Public Information Center - Information (pdf)
Type:	Click for PIC Web Site - Web Site
Location:	Morris Twp, Florham Park, Hanover Township, Morris County
Topic:	25th Legislative District: Sen. Anthony Bucco, Asm. Brian Bergen, Asw. Aura Dunn26th Legislative District: Sen. Joseph Pennacchio, Asm. Jay Webber, Asw. BettyLou DeCroce27th Legislative District: Sen. Richard Codey, Asm. John McKeon, Asw. Mila Jasey

Florham Park Eagle

https://www.newjerseyhills.com/florham park eagle/news/video-ramp-being-considered-to-ease-congestion-at-columbia-turnpike-intersection/article 4a61fbc6-6aa2-5250-bf7b-7d8b062642ec.html
(need a login to view the entire article but it appears that this leads to the virtual PIC)

Florham Park Eagle

く
max
VIDEO: Ramp being considered to ease congestion a Turnpike intersection

Decs.2020 00

The state Department of Transportation (DOT) is considering a new ramp off Route 24 that would connect with Park Avenue further
south of the Park Avenue-Columbia Turnpike intersection to ease traffic congestion in Morris Township.

Appendix F

www.dewberry.com

The following was discussed at the above referenced meeting:
Following brief introductions by Anthony Sytko and a description of the meetings purpose by Ed D'Arcy, John Korunow proceeded to describe the changes that have occurred since the previous Local Officials Meeting in May of 2017. John explained that the Preliminary Preferred Alternative is essentially the same with the exception of a shift to the south on Park Avenue by 350'. The Parcel originally set for the ramp has been sold to a developer to build a hotel. The new location has two added benefits over the original location. First the new signal will now be a greater distance from the signal at Columbia and Park and the ramp will be constructed over a parking lot which reduces the environmental impact by reducing the impervious area required for the project.

John also stated that due to the time that has passed, new crash data and traffic counts where obtained to confirm that the Preliminary Preferred Alternative is still valid.

The meeting was then opened up for questions:

Jim Slate (Morris Twp.) asked what impact the revised Alternative 3 had on the level of service at the intersections. John Korunow (IH Engineering) said the level of service stayed the same and the only real change is the ramp shifting over 350'. There are still 900 vehicles being taken out of the intersection, which will reduce crashes and congestion. Jim asked what the cost change is with this alternative. John said the construction cost is about the same, but there are fewer right-of-way acquisitions and a reduction in impervious surface could reduce the size of the retention basin. Jim asked how the lost parking spots will be made up. John said that will have to be evaluated and discussed with the businesses in Preliminary Engineering.

Mike Sgaramella (Florham Park) asked if the land in the complex would be condemned. Chris Vitz (Morris County) said that it would go through the standard right-of-way process. Ed D'Arcy (NJDOT) explained NJDOT is only handling this Concept Development Phase, and that Morris County will take over for design and construction, and it would only be condemned if an agreement cannot be negotiated. Chris added that the County works with property owners, and condemnation is a last resort.

Mike then asked if this is a surface ramp or an elevated ramp. John said there is a wall along the side, but it is a surface ramp.

Chris asked what the next steps are. Anthony Sytko (NJDOT) said there will be a Public Information Center (PIC) soon, and it will be virtual. Ed added after the PIC is done, the Draft Concept Development Report will be revised, and then the project will be turned over to the County in early 2021.

Jim Slate mentioned he liked portions of the old plan, and preferred that the ramp line up with Prescott Road. He asked if there was any chance things could change. Jim Burnet added that the County could take ownership of Campus Drive and use that to create an interchange that will work for eastbound and westbound. Chris said the County will not take over Campus Drive, as there are impacts to wetlands and the detention basin. In addition, it is too close to the Columbia Turnpike EB ramp to Route 24 EB creating a weave conflict. Jim Slate said he'd like to see the hotel taken into consideration as well. Chris said once it becomes a County project, they can discuss funding and then determinations will be made. John Korunow added that using Campus Drive increases the cost of the project and Ed added that NJDOT prohibits access off a ramp.

Jim Slate then suggested the Triboro Road ramp, and asked if that was a possible option. Chris said that is a separate project, and it will never be built.

Steve Williams (Chatham) asked if the info center will be this year. Anthony said it will be in October or November. Steve then asked what the next steps are, and the timeline. Chris said assuming the Draft CD Report is sent to the County in early 2021, Preliminary Engineering could then begin late 2021 or early 2022 if funding for the project is provided by NJTPA. He said construction is still 7 years away.

The meeting adjourned at 10:45 AM.
If the writer does not receive any comments on the minutes by (October 16, 2020), it will be understood that the content of this memo is acceptable to all attendees.

Wednesday, August 23, 2017 - Rt. 24 EB ramp to CR 510 (Columbia Turnpike) meeting, Municipal Building, Florham Park

Name	Organization	Phone \#	Email address
Anthony Sytko	NJDOT - Gov't \& Comm. Relations	609-530-2110	Anthony.sytko@dot.nj.gov
Steve Williams	Chatham - Administrator	973-701-6807	swilliams@chathamborough.org
Michael Sgaramella	Florham Park - Engineer	973-410-5473	msgaramella@fpboro.net
Dave Leo	Hanover - Engineering	973-428-2489	dleo@hanovertownship.com
Joseph Orlando	Florham Park PD	973-410-5440	545@fppd.net
Mark Taylor	Florham Park - Mayor	973-410-5302	mtaylor@fpboro.net
Aliaa Majeed	NJDOT - Project Mgt.		Aliaa.majeed@dot.nj.gov
Ed D'Arcy	NJDOT - Project Mgt.	609-530-3631	Edward.darcy@dot.nj.gov
Jesse Kaar	Morris Twp. FD	973-326-7462	jkaar@morristwp.com
Joe Cortright	Whippany FD	973-703-0285	jcortright@whippanyfire.com
Christopher Vitz	Morris Co. - Engineer	973-285-6758	cvitz@co.morris.nj.us
Danielle Ferland	Morris Co. - Asst. Bridge Engineer	973-829-8622	dferland@co.morris.nj.us
Robert Vogel	Madison - Engineer	973-593-3060	vogelr@rosenet.org
Chief Robert Treiber	Florham Park PD	973-377-2200	532@fppd.net
Bryan Pilipie	Hanover PD	973-428-2512	bpilipie@hanoverpolice.com
Lt. Ed Conrads	Morris Twp. PD	973-326-7454	econrads@mtpd1422.com
Mark Osterhoudt	Morris Twp. PD	973-326-7436	mosterhoudt@mtpd1422.com
John Korunow	IH Engineers	609-734-8400	jkorunow@ihengineers.com
Brian Stankus	IH Engineers	609-734-8400	bstankus@ihengineers.com
Peter Mancuso	Morris Twp. Committee	973-704-1937	mancuso@att.net
Jim Slate	Morris Twp.	973-326-7443	jslate@morristwp.com

After introductions, Ed D'Arcy (NJDOT) explained that although this is a county project, NJDOT has agreed to do the concept development phase, at the county's request, due to the proximity to a state ramp. The project will be turned over to the county once we finish the CD phase.

John Korunow (IH Engineers) then presented the first alternative. He said that initially they considered ramps off Park Ave. but that didn't work because if there was a backup, it would bring cars onto the interchange. Instead, vehicles will come off Rt. 24 to a new intersection, and that will take the volume off Columbia \& Park. Part of this will remove the ramp from Rt. 24 SB to Columbia. This alternative requires a lot of ROW acquisition, and will cost approximately $\$ 21$ million in total.

Brian Stankus (IH Engineers) provided the traffic engineering breakdown. He said that approximately 90% of the traffic during the AM rush hour is making the left from Columbia onto Park - roughly 1,600 vehicles per hour. The backup meters traffic coming off the ramp as well. All that traffic would be diverted to the new signal intersection, and would still leave approximately 600 vehicles/hr making the left. In addition, the traffic in the evening rush hour making the right from Park to Columbia is also massive, and the new signal will alleviate much of that traffic as well.

There was a discussion about the Honeywell facility, and whether that anticipated traffic was factored into the projections, which it was. John noted they also did not want to put the ramp directly over gas transmission lines. Brian concluded that this alternative was not an overall fail, but did include some F movements. Mayor Taylor (Florham Park) said that safety for drivers is the top priority.

John then presented Alternative 2, which includes roundabouts. This eliminates the 2 A exit, and all traffic would come onto 2 B . There are additional walls needed for the ramps, and more basins will be needed because of the increase impervious surface. This project will total approximately $\$ 15$ million.

Brian explained this alternative is one of the two better ones for the Columbia/Park interchange. It still takes traffic off the intersection, but it does create a weaving section on Rt. 24 EB. He noted that most roundabouts work with low volume, but this is higher volume, and that could create an issue with traffic backing up onto the ramp during the AM peak. Representatives from the Florham Park Police Department expressed concerns about those potential backups causing accidents.

There was a discussion about accidents, and where cars would go in the event of a lane closure due to the circle. John explained that the lanes were of sufficient width that, should one lane be closed, cars would still be able to move. In addition, there would be a wide enough shoulder for most vehicles to get around.

John then presented Alternative 3. This is less expensive and requires less ROW acquisition than the first two; it would cost approximately $\$ 12.5$ million total. The barrier would prevent movement from the ramp to the left turn lane, and new signage would direct drivers to Morristown. However, the ramp from Columbia onto Rt. 24 EB would be eliminated. Mayor Taylor asked if this would help the projected 2020 traffic numbers; Brian said this creates similar numbers to Alternative 2. Brian also noted this causes a 600 foot weaving section on Rt. 24 EB, which would be an issue. Lt. Ed Conrads (Morris Twp. Police Department) said this would force more drivers further down to take Exit 1A at Whippany Rd.

Joe Cortright (Whippany Fire Department) asked if the exit by the hotel would be acquired, because he was concerned about safety access to the Honeywell property. He suggested creating a fire hydrant on the Florham Park side (northeast corner) of the new intersection, because the only hydrant currently there is across the road, and in the event of a fire there, the department would have to close down all of Park Ave. to bring the hose across the road. John said that would be factored in once Concept Development was finished and they moved into Final Design.

Finally, Alternative 4 was presented. This proposes to move the traffic down to Campus Drive. It addresses the safety issues, but does not eliminate traffic out of the Columbia/Park intersection, and does nothing to remove traffic during the evening peak. In addition, this proposal creates multiple driveways on the ramp, which is not allowed under the guidelines. This would require eliminating the trailways that were just put in. Lastly, it creates an F weaving pattern as well.

There was a discussion about the jurisdictional issues. Representatives from Morris County inquired why county funds were being used to pay for a project that would benefit the state ramps. Ed explained that although there is a political aspect to it, it's a county intersection that happens to be near a state ramp, and thus it's ultimately a county project.

There was a discussion about expanding the scope to look at regional issues on Rt. 24, but Ed said this project was limited in scope - this was just about the Columbia/Park intersection and not all of Rt. 24. Robert Vogel (Madison) said a list of pros and cons was needed, and in his opinion the best recommendation is Alternative 1. John said that project costs the most and doesn't create much improvement. Ed recommends Alternative 3, since it improves the safety and is the cheapest, which makes it the most efficient.

Bryan Pilipie (Hanover Police Department) inquired about traffic coming from Morristown that wants to go onto Rt. 24 EB with Alternative 3. Brian answered that they would move through the Columbia/Park intersection and make the left at the new signal. Jesse Kaar (Morris Township Fire Department) responded that would move backups to the new intersection instead. John said it would alleviate most of the issues - there would still be F movements, but there would be fewer of them.

Ed said that he hoped to advance and finalize concept development by the end of the year and present to Morris County in early 2018 to choose the PPA.

Bryan asked if the new signal would impact the timing of signals further down Park Ave. Ed said they would have to coordinate the timing, since ordinarily signals are not placed that closely together. Brian added that there would not be a lot of movement eastbound at the new signal, but it would be sufficient to warrant its own phase.

Steve Williams (Chatham) asked if there was a discussion or examination of looking at Rt. 24 near Rt. 287. Drivers get off early and create problems in that area. Ed mentioned there could be a problem statement submitted about that area. Steve then asked about other issues on Rt. 24 in Chatham. Ed responded that ITS was looking to optimize the signals and signage on Rt. 124, including at its intersection with Rt. 24, but that the purpose of this meeting was to discuss Columbia/Park.

Ed Conrads inquired if there could be a generator switch installed at Columbia/Park to allow the police department to hook up a generator in the event of a power outage, which would save time and money in police manpower at the intersection. Ed D'Arcy responded that it would be passed along to Traffic Engineering, since it's a NJDOT light. Anthony Sytko (NJDOT) added that he would get Lt. Conrads a contact person to investigate that.

MEETING ADJOURNED

John Korunow

To:
Subject:
Attachments:

John Korunow
FW: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
510-623 count summary.xls

From: Brian M. Stankus [mailto: bstankus@ihengineers.com]
Sent: Tuesday, September 12, 2017 6:05 PM
To: 'Vitz, Chris'; 'J ohn Korunow'; 'Edward D'Arcy'
Cc: 'Dellagiacoma, Debra'; 'Majeed, Aliaa'
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Chris -

Attached is a copy of the peak hour intersection counts IH conducted in April 2016 at Columbia Turnpike and Park Avenue.

You noted: "Under the "Advantages" paragraph bullet "3." Notes a third receiving lane would be constructed south of Columbia Turnpike on Park Avenue. That is not reflected on the graphic." We propose to revise the text to eliminate the reference to the third southbound lane (so it matches the graphic). Since no more than two lanes at a time enter southbound Park Avenue at the signal there is not really a need for a third southbound lane here - the third lane could potentially increase the available storage between the two signals, but the lane drop beyond the proposed new signal could add to delays especially during the weekday morning peak hour.

I will send the sketches showing the redistributed Year 2022 peak hour volumes for Alternatives 1 and 3 in a separate email. At this point these diagrams are the rough working pencil sketches but they will show you what we analyzed.

Thanks and please contact me with any further questions.

Brian M. Stankus, P.E., PTOE
Project M anager

103 C ollege R oad East, First Floor
Princeton, NJ 08540
phone (609) 734-8400
direct (609) 524-6407
fax (609) 734-8405
bstankus@ihengineers.com
www.ihengineers.com
"F irst choice of our clients for over 15 years."

From: Vitz, Chris
Sent: Tuesday, September 05, 2017 3:27 PM
To: 'John Korunow' ikorunow@ihengineers.com; 'Brian M. Stankus' ostankus@ihengineers.com; 'Edward D'Arcy' edward.darcy@dot.state.nj.us

Cc: Dellagiacoma, Debra ddellagiacoma@co.morris.nj.us; 'Majeed, Aliaa' <Aliaa.M ajeed@dot.nj.gov>
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
John,
Thank you. I have to present the alternatives at the Freeholder work session on Sept $13^{\text {th }}$. So if the additional answers from Brian are sent before Friday, that would be great.

Christopher J. Vitz, P.E.
Director of Public Works \& County Engineer
County of Morris Department of Public Works
PO Box 900
Morristown, NJ 07963-0900
973-285-6758

From: John Korunow [mailto:jkorunow@ihengineers.com]
Sent: Tuesday, September 05, 2017 11:08 AM
To: Vitz, Chris CVitz@co.morris.nj.us; 'Brian M. Stankus' <ostankus@ ihengineers.com>; 'Edward D'Arcy' edward.darcy@dot.state.nj.us
Cc: Dellagiacoma, Debra ddellagiacoma@co.morris.nj.us; 'Majeed, Aliaa' <Aliaa.M ajeed@dot.nj.gov>
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
See Below

From: Vitz, Chris [mailto: CVitz@co.morris.nj.us]
Sent: Friday, September 01, 2017 4:12 PM
To: 'jkorunow@ihengineers.com'; 'Brian M. Stankus'; Edward D'Arcy
Cc: Dellagiacoma, Debra
Subject: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
John, Brian, Ed,
I want to thank you again for the presentation and work performed on the Route 24 / Columbia Turnpike / Park Avenue interchange and intersection.

I have had some time to digest the materials provided and have a few questions;

1) Was any research done on a direct connection from Route 24 EB to Park Avenue Southbound? I know this has been suggested before at the county level, but I am not sure if your group, or NJDOT Value Engineering looked into that alternative. Some type of answer on that would allow me to address that specific issue with the Freeholder Board. Thank you. - NJDOT Value Solutions looked at this alternative (see attached). This alternative dumps the relocated traffic right back into the intersection at Columbia Turnpike. This will require changing the signal timing to give more to Park Avenue. This alternative may help with the weave on Columbia Turnpike but it does nothing for the delays at the intersection. They are still a very bad "F".
2) Alternative 1
a. There is no justification given as to why the WB Columbia Turnpike to EB Route 24 Ramp is being realigned and reconstructed. We are not touching this particular ramp. It is remaining as is. However the first paragraph suggests that half the remaining Columbia WB left turns would use this alternative to get to the flyover ramp. Why not just allow those WB vehicles to continue to make the left at Park Avenue? The WB vehicles are allowed to go either way. We are suggesting that when they discover that there is another way that reduces their delay that they may take the flyover ramp as an alternate.

How was the percentage of vehicles proposed to use that approach determined? There was no formula for the 50%. It is an assumption based on engineering judgement. It could be more or it could be less. There is no way to know until the construction is complete and the realignment is in use.

I need to defer to Brian Stankus on the rest of these questions. He is out of the office today, back tomorrow. I will also discuss the "bullet 3 " issue with him.
b. Under the "Advantages" paragraph bullet " 3 ." Notes a third receiving lane would be constructed south of Columbia Turnpike on Park Avenue. That is not reflected on the graphic.
3) Alternative 3
a. Under the "Advantages" paragraph bullet "3." Notes a third receiving lane would be constructed south of Columbia Turnpike on Park Avenue. That is not reflected on the graphic.
4) If possible, can the traffic counts be provided for the intersection of Columbia Turnpike and Park Avenue? As well as any other traffic counts taken in the area? It would be helpful for us to have those for any future development applications.
5) If possible, could you provide the proposed traffic volumes on simplified versions of the maps for Alternatives 1 and 3 ?

I would like to have these answers and documents to better inform the County Freeholder Board. I have been asked to present your findings at an upcoming Freeholder Board Work Session. I have copied in Debra Dellagiacoma, our M orris County Traffic Engineer on this message.

Thank you.
Sincerely,

Christopher J. Vitz, P.E.
Director of Public Works \& County Engineer
County of Morris Department of Public Works
PO Box 900
Morristown, NJ 07963-0900
973-285-6758

7	Sewer (Florham Park Borough)	Florham Park Borough Sewer Utility	Mr. Ted Lee	Plant Manager	111 Ridgedale Avenue, Florham Park, NJ 07932	Office: 973-377-1330		27-Oct-16	16-Nov-16		NO	Company Engineer to be Contacted: Howard Matteson -CDM Smith- Senior PE, 110 Fieldcrest Avenue, \#8, 6th Floor, Edison, NJ 08837, 732-225-7000, mattesonHS@cdmsmith.com. UTILITY Agreement: Carl Ganger; Borough of Florham Park, Director-DCS, 111 Ridgedale Avenue, Florham Park, NJ, 973-410-5330, cganger@fpboro.net. Preliminary Engineering funding - not specified
8	Water (Florham Park Borough)	Florham Park Borough Water Utility	Mr. Alex Zipeto	Water Superintendent	111 Ridgedale Avenue, Florham Park, NJ 07932	Office: 973-410-5316	azipeto@fpboro.net	27-Oct-16				1. Called on $01 / 23 / 2017$, left voice message. Mr. Zipeto returned phone call and requested Letter \#1 to be re-send by email. E-mail sent on 01/23/2017.
9	Sewer (Hanover Township)	Hanover Sewerage Authority	Michael C. Wynne, P.E.	Executive Director	PO Box 320 1000 Route 10 Whippany NJ 07981	Office: 973-428-2477 Fax: 973-515-3774	mwynne@hanovertownship.com	27-Oct-16				1. Called on 01/23/2017, left voice message.
10	Water (Hanover Township)	The Southeast Morris County Municipal Utility Authority (SMCMUA)	Paul Kozakiewicz	Superintendent	19 Saddle Road Cedar Knolls, NJ 07927	Office: 973-326-6865	pkozakiewicz@smcmua.org	27-Oct-16	02-Dec-16	YES		1. We got questionnaire from Paul, indicating that SMCMUA has a utility within the limits of the project, but we didn't get the map indicating the exact location. In Paul's email says that there is new person (Mr. Manley) will be assigned for this work. Called on 01/23/2017, but he had a day off, I will call on 01/24/2017.
11	Sewer (Morris Township)	Morris Township Sewer	Mr. James Slate	Township Engineer	$\begin{gathered} 50 \text { Woodland Ave } \\ \text { PO Box } 7603 \\ \text { Convent Station, NJ } 07961 \text { - } \\ 7603 \end{gathered}$	Office: $973-326-7440$	Jslate@morristwp.com	27-Oct-16	23-Jun-17	YES		1. Called on 01/23/2017, left voice message. 2. We got questionnaire on June 23, 2017. Preliminary Engineering funding $\$ 00.00$
12	Water (Morris Township)	The Southeast Morris County Municipal Utility Authority (SMCMUA)	Paul Kozakiewicz	Superintendent	$\begin{aligned} & 19 \text { Saddle Road } \\ & \text { Cedar Knolls, NJ } 07927 \end{aligned}$	Office: 973-326-6865	pkozakiewicz@smcmua.org	27-Oct-16				1. We got questionnaire from Paul, indicating that SMCMUA has a utility within the limits of the project, but we didn't get the map indicating the exact location. In Paul's email says that there is new person (Mr. Manley) will be assigned for this work. Called on 01/23/2017, but he had a day off, I will call on 01/24/2017.
13	Gas	Algonquin Gas Transmission Co	Mr. Andy Meyer	Superintendent	Morristown Airport (MMU) 45 Airport Rd, Morristown, NJ 07960	Office: 973-644-2640	armeyer@spectraenergy.com	23-Jan-17				1. Sent e-mail with Letter \#1 on 01/23/2017
14	Gas	Texas Eastern Gas				Office: 713-627-5400		23-Jan-17				1. Called on 01/23/2017, left voice message to engineering department of central office in Texas. Also found the local Morristown office 1 Columbia Rd., Morristown, NJ 07960 (973)5391933, nobody picks the phone answer machine.

UPC \# 154330
October 28, 2016

Mr. Baxter Turley
Advanced Engineer
Jersey Central Power \& Light of New Jersey (NORTH)
300 Madison Avenue
Morristown NJ 07962
Phone: 732-212-4262

Re:
NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
ELECTRIC UTILITY

Project Designer:
IH Engineers, P.C.
103 College Road East, $1^{\text {st }} \mathrm{Fl}$.
Princeton, NJ 08540
ATTN: John Korunow, P.E.
Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Turley:
The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with Jersey Central Power \& Light of New Jersey (NORTH) - Electric and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November 25 ${ }^{\text {th }}, \mathbf{2 0 1 6}$. If you prefer to respond by FAX or E-mail the numbers are in the caption above.
(X) We DO HAVE existing facilities within the project limits.
(\quad We DO NOT HAVE existing facilities within the project limits.
(..) We HAVE PROPOSED facilities planned within the project limits.
(X) The following companies are tenants on/in our facilities within the project limits:

Verizon
Cablevision

(X) The Company Engineer to be contacted is:

Name Company Title	Harvey M. Lockley Address CentralPower \& Light
	Engineering Services Supervisor.
	101. Crawford's Corner Road
Bld. 5th. Fl. Suite 1-511	
Tel:	$\frac{\text { Holmdel, NJ. } 07733}{(732) 212-4262}$
Fax:	$\frac{(330) 245-5635}{\text { Email: }}$

(X) The UTILITY AGREEMENT shall be sent to the following person:
(X) Same as above or fill in below:

(X) The amount of Preliminary Engineering funding needed will be $\$ 20,000.00$ (This amount is only an estimate)
(X)

We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
\qquad) Design/Engineering
() Construction - Some or All?
) Neither - the Company will perform (or arrange to have performed) all needed work.) Not certain at this time.

End of questionnaire.
If you have any further questions, please feel free to contact me.

(Interchange Improvements)
UPC \# 154330

January 23, 2017

Mr. Andy Meyer
Algonquin Gas Transmission Co
Morristown Airport (MMU)
45 Airport Rd,
Morristown, NJ 07960
Phone: 973-664-2640

Re:
NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
GAS UTILITY

Project Designer:
IH Engineers, P.C.
103 College Road East, $1^{\text {st }} \mathrm{Fl}$.
Princeton, NJ 08540
ATTN: John Korunow, P.E. Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Meyer:
The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with Algonquin Gas Transmission Co - Gas and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by February 23 ${ }^{\text {rd }}$, 2017. If you prefer to respond by FAX or E-mail the numbers are in the caption above.
\qquad) We DO HAVE existing facilities within the project limits.
\qquad) We DO NOT HAVE existing facilities within the project limits.
\qquad) We HAVE PROPOSED facilities planned within the project limits.
\qquad) The following companies are tenants on/in our facilities within the project limits:
\qquad) The Company Engineer to be contacted is:

Name
Company
Title
Address
\qquad
\qquad
\qquad
\qquad

Tel:
Fax:
Email: \qquad
() The UTILITY AGREEMENT shall be sent to the following person:
(\qquad Same as above or fill in below:

Name
Company
Title
Address

Tel:
Fax:
Email:
(\quad The amount of Preliminary Engineering funding needed will be $\$$ (This amount is only an estimate)
\qquad We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
(Design/Engineering
(Construction - Some or All?
(—) Neither - the Company will perform (or arrange to have performed) all needed work.
(Not certain at this time.

End of questionnaire.
If you have any further questions, please feel free to contact me.

103 College Road East, $1^{\text {sl }}$ Floor Princeton, NJ 08540
T: 609-734-8400 F: 609-734-8405
www.hengineers.com
Also in: Hackensack and Staten Island
Re: NJDOT Utility Letter \#1
NJ Route 24 and Columbia Turnpike Interchange
(Interchange Improvements)
UPC \# 154330

October 28, 2016

Mr. John Wyckoff
Director - Engineering
NJ Natural Gas
1415 Wyckoff Road
PO Box 1464
Wall, NJ 07719
Phone: 732-938-7864

Re:

NJ Route 24 and Columbia Turnpike Interchange

Concept Development

Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
GAS UTILITY

RECEIVED
 กCT 312016
 MAK - ENGINEERING

Dear Mr. Wyckoff:
The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with NJ Natural Gas - Gas and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November $25^{\text {th }}, 2016$. If you prefer to respond by FAX or E-mail the numbers are in the caption above.
(X) We DO HAVE existing facilities within the project limits.
() We DO NOT HAVE existing facilities within the project limits.
(We HAVE PROPOSED facilities planned within the project limits.
\qquad) The following companies are tenants on/in our facilities within the project limits:

Re: NJDOT Utility Letter \#1 NJ Route 24 and Columbia Turnpike Interchange (Interchange Improvements) UPC \# 154330
(X) The Company Engineer to be contacted is:

Name	Kyle Rauth
Company	NEW JERSEY NATURAL GAS
Title	Project Engineer
Address	1415 Wyckoff Rd
	PO Box 1464
Tel:	Wall, NJ 07719
Fax:	T: 732-919-8016
Email:	F: 732-919-7854
	Krauth@njng.com

(X) The UTILITY AGREEMENT shall be sent to the following person:
\qquad Same as above or fill in below:

Name
John B. Wyckoff, P.E. NEW JERSEY NATURAL GAS
Title Director - Engineering
Company
Address 1415 Wyckoff Rd
PO Box 1464
Wall, NJ 07719
Tel: \quad T: 732-938-7864
Email: F: 732-919-7854
JBWyckoff@NJNG.com
(ـ) The amount of Preliminary Engineering funding needed will be \$10,000.00 (This amount is only an estimate)
\qquad) We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
(__) Design/Engineering) Construction - Some or All?
) Neither - the Company will perform (or arrange to have performed) all needed work.) Not certain at this time.

End of questionnaire.

If you have any further questions, please feel free to contact me.

M:\Users\All GIS Users\Mark Ups\FoldernamelFilename.mxd

103 College Road East, $1{ }^{\text {st }}$ Floor Princeton, NJ 08540
T: 609-734-8400 F: 609-734-8405
www ihengineers.com
Aso in: Hackensack and Staten Istand
Re: NJDOT Utility Letter \#1
(Interchange Improvements)
UPC \# 154330

October 28, 2016

Mr. Ted Lee

Plant Manager
Florham Park Borough Sewer Utility
111 Ridgedale Avenue,
Florham Park, NJ 07932
Phone: 973-377-1330

Re:

NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
SEWER UTLLTY

Project Designer:

IH Engineers, P.C. 103 College Road East, $1^{\text {st }}$ Fl.
Princeton, NJ 08540
ATTN: John Korunow, P.E.
Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Lee:
The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with Florham Park Borough Sewer Utility - Sewer and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November $25^{\text {th }}, 2016$. If you prefer to respond by FAX or E-mail the numbers are in the caption above.
() We DO HAVE existing facilities within the project limits.
(*) We DO NOT HAVE existing faclities within the project limits.
\qquad) We HAVE PROPOSED facilities planned within the project limits.
() The following companies are tenants on/in our facilities within the project limits:

Re: NJDOT Utility Letter \#1
NJ Route 24 and Columbia Turnpike Interchange
(Interchange Improvements)
UPC \# 154330
(\vee) The Company Engineer to be contacted is:

Name	Howard matteson
Company	CDM Smith
Title	Senior PE
Address	110 Fielderest Ave $\$ 8$ bIF Floor
	Edison, N5 08837
Tel:	(732) $225-7000$
Fax:	
Email:	mattesonHSecdmsmoth

(\checkmark) The UTILITY AGREEMENT shall be sent to the following person:
($\vee)$ Same as above or fill in below:

Name	Carl Cancer
Company	Boreurh ef Florhen Park
Title	Address

Tel: $\quad(973) 410-5330$
Fax: $\quad(973) 410-5490$
Email: cgenger efpbroinet
() The amount of Preliminary Engineering funding needed will be \$ (This amount is only an estimate)
(${ }^{\text {() We would like the NJDOT to arrange for the following work to be done for our facilities should it be }}$ necessary for them to be relocated or modified.
() Design/Engineering
() Construction - Some or All?
(—) Neither - the Company will perform (or arrange to have performed) all needed work.
(
Not certain at this time.

End of questionnaire.
If you have any further questions, please feel free to contact me.

JAMES R. SLATE, P.E. TOWNSHIP ENGINEER
(973) 326-7440

John Korunow, PE
IH Engineers, PC
103 College Road East, $1^{\text {st }}$ Floor
Princeton, NJ 08540

TOWNSHIP OF MORRIS

Re: Concept Development- Interchange Improvements
Park Avenue, Florham Park
Township of Morris Sanitary Sewer System

Dear Mr. Korunow:

Pursuant to your recent request for information concerning our sanitary sewer system in your project limits,
Enclosed please find the completed questionnaire you have submitted to our office. Unfortunately, we do not have any plans, either design or as-builts of this sanitary sewer system in our archive files. Since you are preparing concept plans for the revised interchange ramp for Route 24 , we do not, at this time, know whether any modifications will be required of this system in your project limits.

While we understand the scope of this project is to reduce the impacts of Route 24 traffic exiting onto Columbia Road and impacting the Park Avenue/ Columbia Road intersection, the concept to move the impact to the Park Avenue intersection with the old Honeywell intersection may not address the traffic impacts unless additional ramps/exits are placed along the Route 24 corridor to address the new development along the corridor. During the various meetings held by the State, County of Morris and stakeholders along the Park Avenue corridor, it was requested that the State DOT look into installing ramps/ exits at the rear of various office complexes in the Rockerfeller Development tract and tying the ramps/ exits into the boulevard roadways and commons access roads between the various office buildings. By installing exits into the points of destination for these cars, the Park Avenue/ Columbia Road intersection would handle the other traffic coming west along Columbia Road and east along Park Avenue.

Our office would be interested in meeting with your group to discuss our concerns, even before a concept is designed for this new ramp. If you have any questions or require any additional information please give our office a call or email my office at JSlate@morristwp.com.

103 College Road East, $1^{\text {st }}$ Floor Princeton, NJ 08540
T: 609-734-8400 F: 609-734-8405 www.ihengineers.com Also in: Hackensack and Staten Island

Re: NJDOT Utility Letter \#1

Mr. James Slate

Township Engineer
Morris Township Sewer
50 Woodland Ave
PO Box 7603
Convent Station, NJ 07961-7603
Phone: 973-326-7440

Re:
NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
SEWER UTILITY

Project Designer:

IH Engineers, P.C. 103 College Road East, $1^{\text {st }} \mathrm{Fl}$.
Princeton, NJ 08540
ATTN: John Korunow, P.E. Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Slate:
The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with Morris Township Sewer Hanover - Sewer and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November $25^{\text {th }}, 2016$. If you prefer to respond by FAX or E-mail the numbers are in the caption above.

We DO HAVE existing facilities within the project limits.
(\square)
We DO NOT HAVE existing facilities within the project limits.
\qquad We HAVE PROPOSED facilities planned within the project limits.
\qquad The following companies are tenants on/in our facilities within the project limits:
\qquad) The Company Engineer to be contacted is:

Name Sames Slate Company

TOWNSHIP OF MORRIS
Title TownSHIP ENGIMEEF
Address
50 klooslañ DVE
MORRISTOWN, NT 07960
Tel: 973-326-7440
Fax: 973-605-8363
Email: VSLATEEMORRISTWP.COM
() The UTILITY AGREEMENT shall be sent to the following person:
(X) Same as above or fill in below:

Name

Company

\qquad
Title
Address

Tel:
Fax:
Email:
() The amount of Preliminary Engineering funding needed will be $\$$ (This amount is only an estimate)
\qquad) We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
(Design/Engineering
() Construction - Some or All?
(_) Neither - the Company will perform (or arrange to have performed) all needed work.
(X) Not certain at this time.

End of questionnaire.
If you have any further questions, please feel free to contact me.

Re: NJDOT Utility Letter \#1

UPC \# 154330
October 28, 2016

Mr. Frank Antisell
Manager
Verizon
6000 Hadley Road
South Plainfield, NJ 07080
Phone: 908-412-6160

Re:
NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
TELEPHONE UTILITY

Project Designer:
IH Engineers, P.C.
103 College Road East, $1^{\text {st }}$ Fl.
Princeton, NJ 08540
ATTN: John Korunow, P.E.
Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Antisell:

The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with Verizon - Telephone and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November 25 ${ }^{\text {th }}$, 2016. If you prefer to respond by FAX or E-mail the numbers are in the caption above.

We DO HAVE existing facilities within the project limits.
\qquad We DO NOT HAVE existing facilities within the project limits.
\qquad) We HAVE PROPOSED facilities planned within the project limits.
\qquad) The following companies are tenants on/in our facilities within the project limits:

(X) The Company Engineer to be contacted is:
 The UTILITY AGREEMENT shall be sent to the following person:
\qquad Same as above or fill in below:

(X) The amount of Preliminary Engineering funding needed will be $\$ \$ 20,000$

 (This amount is only an estimate)\qquad) We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
(Design/Engineering
() Construction - Some or All?
X) Neither - the Company will perform (or arrange to have performed) all needed work.) Not certain at this time.

End of questionnaire.
If you have any further questions, please feel free to contact me.

103 College Road East, $1^{\text {st }}$ Floor Princeton, NJ 08540
T: 609-734-8400 F: 609-734-8405
www.hengineers.com
Also in: Hackensack and Staten Island
Re: NJDOT Utility Letter \#1
NJ Route 24 and Columbia Turnpike Interchange
(Interchange Improvements)
UPC \# 154330

October 28, 2016

Mr. Paul Kozakiewicz

Superintendent
The Southeast Morris County Municipal Utility Authority
(SMCMUA)
19 Saddle Road
Cedar Knolls, NJ 07927
Phone: 973-326-6865

Re:

NJ Route 24 and Columbia Turnpike Interchange
Concept Development
Interchange Improvements
Borough of Florham Park, Townships of Morris and Hanover
Morris County
UPC Code: 154330
WATER UTILITY

Project Designer:

IH Engineers, P.C.
103 College Road East, $1^{\text {st }}$ Fl.
Princeton, NJ 08540
ATTN: John Korunow, P.E.
Phone: (609) 734-8400
Fax: (609) 734-8405
Email: jkorunow@ihengineers.com

Dear Mr. Kozakiewicz:

The New Jersey Department of Transportation (NJDOT) has contracted IH Engineers, P.C. (IH) for Concept Development (CD) for Interchange Improvements of NJ Route 24, Park Avenue and Columbia Turnpike Interchange. The project involves alternative analysis for the relocation of interchange ramps. This will involve relocating traffic from the intersection of Columbia Turnpike and Park Avenue to Park Avenue approximately 1000 feet east of the intersection.

This letter will serve to established an official contact with The Southeast Morris County Municipal Utility Authority (SMCMUA) - Water and verify if you do have any facility in the project affected area. Please find enclosed project Location Map and Photos of existing condition of the project area, to give you a better understanding of proposed project. If your facility exists within the project area, please estimate and provide the additional amount of Preliminary Engineering (PE) expenses you may request to pay for your effort in assisting NJDOT to investigate and verify the actual information and to develop accommodation schemes of all your facilities affected by the project.

Please complete the following questionnaire and return it to the Designer's Engineer by November $\mathbf{2 5}^{\text {th }}, \mathbf{2 0 1 6}$. If you prefer to respond by FAX or E-mail the numbers are in the caption above.
(4) We DO HAVE existing facilities within the project limits.
$(\quad$ We DO NOT HAVE existing facilities within the project limits.
(_) We HAVE PROPOSED facilities planned within the project limits.

(_) The following companies are tenants on/in our facilities within the project limits:

(4) The Company Engineer to be contacted is:

(X)The UTILITY AGREEMENT shall be sent to the following person:
\qquad) Same as above or fill in below:

Name Laura Cummings PE
Company Southeast Morris County MUA
Title Executive Director/Chief Engineer
Address

Tel:
$(973) 326-6866$
Fax: \quad (973) 326-7233
Email: lcummings@smcmua.org
() The amount of Preliminary Engineering funding needed will be \$ \qquad (This amount is only an estimate)
(X) We would like the NJDOT to arrange for the following work to be done for our facilities should it be necessary for them to be relocated or modified.
(x) Design/Engineering
(\backslash) Construction - Some or All? \qquad
) Neither - the Company will perform (or arrange to have performed) all needed work.
(\quad Not certain at this time.
End of questionnaire.
If you have any further questions, please feel free to contact me.

Y:INJDOT\GEC 2013 Term Agreement iTO 30 Rte 24 and Columbia Turnpike Interchangel05 Utility Letter \#1\Letter \#1 - Water= The 2 of 2
Southeast Morris County Municipal Utility Authority.docx

Appendix " 0 "

Design Communications Report (DCR) \& STIP

DEPARTMENT OF TRANSPORTATION
Quality Management

Design Communications Report

PROJECT NAME: Route 24 EB Ramp to CR 510 (Columbia Turnpike)
UPC\#: 154330

DESIGNER: IH Engineers, PC
DESIGNER PROJECT MANAGER: John W. Korunow, Jr., PE

NJDOT PROJECT MANAGER: Edward D'Arcy

Design Communications Report Approval

Final Design and Construction Phases

PROJECT NAME:	UPC\#:
Route 24 EB Ramp to CR 510 (Columbia	154330
CONSULTING FIRM:	DESIGNER PROJECT MANAGER:
IH Engineers, PC	John W. Korunow, JR., PE
NJDOT PROJECT MANAGER:	NJDOT EXECUTIVE REGIONAL
Edward D'Arcy	MANAGER: Atul Shah

Design Communications Report (DCR) Entry No.(s) 1-4
Pursuant to the Interactive Communications Procedure and the Interactive Communications Procedure of the New Jersey Department of Transportation (the Department), the Department's Project Manager has approved the DCR identified above, (approved by Entry No.(s)) subject to the certification below of the Designer.
This approval by the Department's Project Manager is not a certification by the Department that the above project has been designed in accordance with all applicable State and Federal design standards and requirements or that comments and decisions made during Interactive Communications with the Department on design elements and features of the project to this point have been incorporated or satisfactorily resolved and the Contract Documents have been revised accordingly, and the Department is fully relying in this regard upon the certification below by the Designer.
Furthermore, the Project Manager, by signing below on behalf of the Department, has not waived the Designer's obligation proyide contract documents that are constructible and free from errors and/or

[^7]NJDOT In-House Design Team Leader

Design Communications Report Entry Form

Project Name: Route 24 EB Ramp to CR 510 (Columbia Turnpike)

Design Activity No. 2000	April 27, 2016	DCR Entry No. 1
Concept Development Initiated - Kick Off Meeting		
Edward D'Arcy, Value Solutions SME, John Korunow		
A Kick Off Meeting was held with the NJDOT PM, Value Solutions and the Designer to discuss the Route 24 Interchange and Columbia Turnpike - Smart Solution Study - Smart Solutions Workshop. During the workshop, several alternatives were developed centered on improving the safety of the traffic exiting from Route 24 EB to Columbia Turnpike WB and improving the LOS at the intersection of Columbia Turnpike and Park Avenue (650' west of Route 24 EB ramp. Currently traffic exiting Route 24 weaves across multiple through lanes to make the left at Park Avenue. This safety issue is compounded by the high volumes on Columbia Turnpike and a very poor LOS.		
Of the many Value Solutions Alternatives, two were selected to be advanced to Concept Development. These alternatives are:		
- Alternate 1 - Overpass from the Route 24 EB Ramp/Columbia Turnpike WB to Park		
- Avenue and Park Avenue to Route 24 EB.		
Alternate 2 - Modern Roundabout Hybrid Alternative.		
In addition to Alternatives 1 \& 2, IH will look into developing a third alternative.		

Design Activity No. 2430	May 18, 2017	DCR Entry No. 2 Core Group Meeting
Who (NJDOT Project Manager/ SME /Stakeholder /Designer)		
Design Element issue		
Decision and reasoning		

Design Activity No.	(Approved date by NJDOT Project Manager)	DCR Entry No. Hydraulics \& Hydrology
Edward D'Arcy, SME's, John Korunow		
The meeting was set to review the results of the analysis of the two Value Solution Alternatives: - Alternate 1 - Overpass from the Route 24 EB Ramp/Columbia Turnpike WB to Park Avenue and Park Avenue to Route 24 EB. - Alternate 2 - Modern Roundabout Hybrid Alternative.		

Project Name: Route 24 EB Ramp to CR 510 (Columbia Turnpike)

separation between Route 24 EB Ramp traffic and Columbia Turnpike traffic. Route 24 EB Ramp traffic will no longer be able to turn left at Park Avenue eliminating a dangerous weave. However, an alternate ramp will be provided directly to Park Avenue much like Alternative 1 without the overpass.

The analysis showed that Alternative 3, while not great, provided the best LOS for the least cost and the least impacts to ROW.

During this meeting Value Solutions offered an additional alternative. This alternative proposes to utilize Campus Drive to the east as a new half interchange with Route 24 EB. Currently Campus Drive is a cul-de-sac that provides access to six large office complexes. IH was tasked with determining if the Campus Drive Alternative was feasible.

Design Activity No. 2440	August 23, 2017
Edward D'Arcy \& Aliaa Majeed - NJDOT Project Management, Anthony Sitko - NJDOT OCCR, John Korunow \& Brian Stankus - IH Engineers, Officials and Emergency Services from Florham Park, Chatham, Morris, Madison and Whippany, and Morris County Engineering.	
The purpose of the meeting was to present all 4 alternatives to the Officials of the adjoining communities and Morris County. Alternatives 1-3 were described in detail as they were for the Core Group Meeting and Alternate 3 was presented as the possible preferred alternative.	
Alternate 4 was also presented; however, details were not developed further than an image on an aerial plan. Many of the officials seemed to like the idea of moving the traffic away from the intersection of Park and Columbia Turnpike.	
It was decided to analyze Alternate 4 to determine if it is worthwhile to pursue or not.	

Design Activity No. 2440	September 25, 2020	DCR Entry No. 4 Hold Local Officials Briefing
Edward D'Arcy \& Alexander Maevsky - NJDOT Project Management, Anthony Sytko - NJDOT OCCR, John Korunow - IH Engineers, John Coffey - Dewberry, Officials and Emergency Services from Florham Park, Chatham, Morris, Madison, Hanover and Morris County Engineering.		
The purpose of the meeting was to present a new Alternative - 3 (revised). This alternative was developed as the property which was to be purchased for alternative 3 is no longer available. The property owner was granted a permit to build the new hotel The Officials of the adjoining communities and Morris County were presented an Alternative 3 (Revised) to be the possible preferred alternative.		

Develop recommendations that would improve the traffic flow between the ramp and the intersection along with providing improvements to the operation of the intersection that could be investigated further. The Route 24 EB ramp merges with Columbia Turnpike WB approximately 650 feet east of the signalized intersection of Columbia Turnpike and Park Avenue. At this intersection there is a heavy AM left turn movement on the Columbia Turnpike WB approach that currently utilizes a double left-turn lane.
COUNTY: Morris
MUNICIPALITY: Morris Twp, Hanover Twp
MILEPOSTS: 2.09
STRUCTURE NO.: NA
LEGISLATIVE DISTRICT: 27, 25
SPONSOR: Morris County
ASSET MANAGEMENT CATEGORY: Congestion Relief: Highway Operational Improvements

MPO	Phase	Year
NJTPA	CD	2016

Route 26, Cox Road to Nassau Street

Federal Resurfacing/Rehab project.
COUNTY: Middlesex
MUNICIPALITY: North Brunswick Twp
MILEPOSTS: 1.64-2.54
STRUCTURE NO.: N/A
LEGISLATIVE DISTRICT: 17 SPONSOR: NJDOT
ASSET MANAGEMENT CATEGORY: Road Assets: Highway Resurfacing

MPO	Phase	Year
NJTPA	CD	2016

Appendix "P"

Resolutions of Support

John Korunow

From:
Sent:
To:
Cc:
Subject:

Vitz, Chris CVitz@co.morris.nj.us
Wednesday, December 13, 2017 2:31 PM
'John Korunow'
Dellagiacoma, Debra; Edward D'Arcy; M ajeed, Aliaa; Brian M. Stankus
RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.

John,

The County supports Alternative 3 as the most viable option for improvements to that area.

Do you need anything additional?

Christopher J. Vitz, P.E.
Director of Public Works \& County Engineer
County of Morris Department of Public Works
PO Box 900
Morristown, NJ 07963-0900
973-285-6758

From: John Korunow [mailto:jkorunow@ihengineers.com]
Sent: Wednesday, December 13, 2017 1:04 PM
To: Vitz, Chris CVitz@co.morris.nj.us
Cc: Dellagiacoma, Debra ddellagiacoma@co.morris.nj.us; Edward D'Arcy edward.darcy@dot.state.nj.us; Majeed,
Aliaa <Aliaa.M ajeed@dot.nj.gov>; Brian M. Stankus <bstankus@ ihengineers.com>
Subject: Re: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Chris. Do you have a final decision on the PPA? We need documentation from you to finalize the CD Report
John
Sent from my iPhone
On Nov 8, 2017, at 3:50 PM, Vitz, Chris <CVitz@ co.morris.nj.us>wrote:
John,
Thank you for providing this additional information. Will this be included in the final report? Do you have a date as to when the report will be completed?

As an aside we did meet with officials from Hanover, Florham Park, M orris Township, M adison and Chatham Borough and explained why Alternative 3 was the best option to progress. They all seemed to sign on to the project as we pressed to keep the focus on this intersection alone, not other requested improvements outside the borders of this project.

We have also spoken with the NJTPA and are working with them to get this project into the TIP.

From: John Korunow [mailto:jkorunow @ihengineers.com]
Sent: M onday, November 06, 2017 2:37 PM
To: Vitz, Chris CVitz@co.morris.nj.us; Dellagiacoma, Debra ddellagiacoma@co.morris.nj.us
Cc: 'Edward D'Arcy' edward.darcy@dot.state.nj.us; 'M ajeed, Aliaa' <Aliaa.M ajeed@dot.nj.gov>; 'Brian M. Stankus' <bstankus@ ihengineers.com>

Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Hi Chris, we have completed our Evaluation of the Campus Drive Alternative. The Cost is substantially more than Alternative 3 for the following reasons.

- A good portion of the ramps to and from Route 24 will be in wetlands. This material is not suitable and will need to be excavated and hauled away. The new material will need to be porous and will therefore cost more than your typical borrow material.
- The Campus Drive roadway will need to be replaced with a more substantial pavement box since it will be handling significantly more traffic including trucks.
- The Total Cost for Design and Construction is $\$ 10.6$ million
- The cost does not include ROW for the ramps and the new roundabout or for wetland mitigation and a storm water basin.
See attached
Regards
John W. Korunow Jr., PE, CME
Transportation D epartment M anager
and O perations M anager
<image001.jpg>
103 C ollege R oad East, First Floor
Princeton, NJ 08540
(P) 609-734-8400 Ext. 6404
(F) 609-734-8405
jkorunow @ihengineers.com
www.ihengineers.com
"F irst choice of our clients for over 15 years"

From: Vitz, Chris [mailto:CVitz@co.morris.nj.us]
Sent: Wednesday, September 13, 2017 2:35 PM
To: 'Edward D'Arcy'; 'Brian M. Stankus'; 'J ohn Korunow'
Cc: Dellagiacoma, Debra; 'Majeed, Aliaa'
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Ed,
I presented the various alternatives at the Freeholder Work Session this morning. While they agree that Alternative 3 is a viable option the overall feeling is it will take many years to implement. We have already contacted the NJTPA about funding.

However the Freeholder Board also asked for additional detail on Alternative 4, the extension of Campus Drive. I did not anticipate this response from the board. I have several questions I need to investigate. They are;

1) If Campus Drive were a County roadway and new ramps to were to be constructed to Route 24 would or could the jurisdiction change between County / State occur at the point of the cul-de-sac? Would that eliminate the State's concern of having private driveway access to a state highway ramp?
2) Did the NJDOT or your consultant investigate the size or cost of any property acquisitions with this alternative?
3) Did the NJDOT or your consultant come up with an estimated cost for this alternative?
4) If there is a specific reason(s) this Alternative cannot move forward, please let me know.

The Freeholder Board understands it may take 5-10 years to implement Alternate 3 with State or Federal funding through NJTPA at $\$ 12$ million. So they are asking if both could be done. If Alternative 4 could be implemented more quickly and at a substantially lower cost it would show local businesses that we are being proactive in attempting to address traffic problems in the area, stemming the possible loss of those tenants. This Alternative could work as a stop gap until the larger project is completed and remain in place to allow an additional connection to Route 24.

Thank you for taking the time to review my questions and any responses you may provide.
Christopher J. Vitz, P.E.
Director of Public Works \& County Engineer County of Morris Department of Public Works
PO Box 900
Morristown, NJ 07963-0900
973-285-6758

Appendix " Q "

NJDOT Communications _ Value Engineering Study

John Korunow

From:	D'Arcy, Edward edward.darcy@dot.nj.gov
Sent:	Thursday, May 18, 2017 4:51 PM
To:	John Korunow
Cc:	Majeed, Aliaa
Subject:	FW: Rt.24 EB Ramp to CR 510 (Columbia Turnpike)- Scope Team M eeting-Project Fact
	Sheet
Attachments:	Rt 24 VE 1.pdf

John,
For your use to evaluate the suggestion from the Scope Team M eeting. Thanks.

From: Kondash, Thomas
Sent: Thursday, M ay 18, 2017 3:23 PM
To: M ajeed, Aliaa <Aliaa.M ajeed@dot.nj.gov>; D'Arcy, Edward edward.darcy@dot.nj.gov
Cc: Alsharaa, M anar $\langle M$ anar.Alsharaa@ dot.nj.gov>; Ahmadi, Hedaeatull Hedaeatull.Ahmadi@dot.nj.gov; Patibandha, Hetal Hetal.Patibandha@dot.nj.gov; Abitz, Robert robert.abitz@dot.nj.gov; Hauske, M ark
mark.hauske@dot.nj.gov; Vijayakumar, Amutha Amutha.Vijayakumar@dot.nj.gov; Vo, Binh binh.vo@dot.nj.gov;
Howard, Warren Warren.Howard@dot.nj.gov
Subject: RE: Rt. 24 EB Ramp to CR 510 (Columbia Turnpike)- Scope Team M eeting-Project Fact Sheet

Ed and Aliaa,

As presented today by the VE "team" (past and present members).
Thomas J. Kondash, Jr.
Project M anager
Claims-Risk Analysis \& Value Engineering
(609) 530-4947

From: M ajeed, Aliaa
Sent: Tuesday, M ay 09, 2017 2:46 PM
To: Virgilio, Al; Abitz, Robert; Howard, Warren; Balluch, Al; Cheney, Amber; Burns, Vincent; M aniar, Nipa; Kondash, Thomas; Gresavage, Susan; Khalid Shaikh; Alsharaa, M anar; Hirt, Deborah
Cc: D'Arcy, Edward
Subject: RE: Rt. 24 EB Ramp to CR 510 (Columbia Turnpike)- Scope Team M eeting-Project Fact Sheet

Good afternoon All,

Please find the attached files (Project Fact Sheet \& Alternatives) for Rt. 24 EB Ramp to 510 (Columbia Turnpike) - Scope Team M eeting by $5 / 18 / 2017$ at 1:30 pm in conference Room $3 B, 3^{\text {rd }}$ Floor.

Thanks!!

Aliaa M ajeed
Assistant Project M anager
Division of Project M anagement
Phone (609-530-3713)

From: M ajeed, Aliaa
Sent: M onday, M ay 01, 2017 2:05 PM
To: Virgilio, Al; Abitz, Robert; Howard, Warren; Balluch, Al; Cheney, Amber; Hartle, Paul; Burns, Vincent; M aniar, Nipa; Kondash, Thomas; Gresavage, Susan; '
Cc: D'Arcy, Edward
Subject: Rt. 24 EB Ramp to CR 510 (Columbia turnpike)- Scope Team M eeting

Dear All,
Good afternoon!

Scope Team M eeting is scheduled on 05-18-2017 at 1:30 PM in Conference Room 3B, E \& O Building headquarter. Looking forward to your participation. Also, an agenda for project will be sent to you in near future.

Thanks,
Aliaa M ajeed
Assistant Project M anager
Division of Project M anagement
Phone (609-530-3713)

Kishor Shah

From:
John Korunow jkorunow@ihengineers.com
Sent: Wednesday, January 03, 2018 2:16 PM
To:
Subject:
Attachments:

'Kishor Shah'

FW: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives. Estimate_Alternative4.xls; Alternative 4.docx; campus_drive_Optimized.pdf

From: John Korunow [mailto:jkorunow@ihengineers.com]
Sent: Monday, November 06, 2017 2:37 PM
To: 'Vitz, Chris'; 'Dellagiacoma, Debra'
Cc: 'Edward D'Arcy'; 'Majeed, Aliaa'; 'Brian M. Stankus'
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Hi Chris, we have completed our Evaluation of the Campus Drive Alternative. The Cost is substantially more than Alternative 3 for the following reasons.

- A good portion of the ramps to and from Route 24 will be in wetlands. This material is not suitable and will need to be excavated and hauled away. The new material will need to be porous and will therefore cost more than your typical borrow material.
- The Campus Drive roadway will need to be replaced with a more substantial pavement box since it will be handling significantly more traffic including trucks.
- The Total Cost for Design and Construction is $\$ 10.6$ million
- The cost does not include ROW for the ramps and the new roundabout or for wetland mitigation and a storm water basin.
See attached
Regards
John W. K orunow Jr., PE, CM E
Transportation D epartment M anager
and Operations M anager

103 C ollege R oad East, First Floor
Princeton, NJ 08540
(P) 609-734-8400 Ext. 6404
(F) 609-734-8405
jkorunow @ihengineers.com
www.ihengineers.com
"F irst choice of our clients for over 15 years"

From: Vitz, Chris [mailto:CVitz@co.morris.nj.us]
Sent: Wednesday, September 13, 2017 2:35 PM
To: 'Edward D'Arcy'; 'Brian M. Stankus'; 'J ohn Korunow'

Cc: Dellagiacoma, Debra; 'Majeed, Aliaa'
Subject: RE: Route 24 and Columbia Turnpike Interchange and Intersection Alternatives.
Ed,
I presented the various alternatives at the Freeholder Work Session this morning. While they agree that Alternative 3 is a viable option the overall feeling is it will take many years to implement. We have already contacted the NJTPA about funding.

However the Freeholder Board also asked for additional detail on Alternative 4, the extension of Campus Drive. I did not anticipate this response from the board. I have several questions I need to investigate. They are;

1) If Campus Drive were a County roadway and new ramps to were to be constructed to Route 24 would or could the jurisdiction change between County / State occur at the point of the cul-de-sac? Would that eliminate the State's concern of having private driveway access to a state highway ramp?
2) Did the NJDOT or your consultant investigate the size or cost of any property acquisitions with this alternative?
3) Did the NJDOT or your consultant come up with an estimated cost for this alternative?
4) If there is a specific reason(s) this Alternative cannot move forward, please let me know.

The Freeholder Board understands it may take 5-10 years to implement Alternate 3 with State or Federal funding through NJTPA at $\$ 12$ million. So they are asking if both could be done. If Alternative 4 could be implemented more quickly and at a substantially lower cost it would show local businesses that we are being proactive in attempting to address traffic problems in the area, stemming the possible loss of those tenants. This Alternative could work as a stop gap until the larger project is completed and remain in place to allow an additional connection to Route 24.

Thank you for taking the time to review my questions and any responses you may provide.

Christopher J. Vitz, P.E.

Director of Public Works \& County Engineer
County of Morris Department of Public Works
PO Box 900
Morristown, NJ 07963-0900
973-285-6758

103 College Road East, 1st Floor, Princeton, NJ 08540 (609) 734-8400, (609) 734-8405 (fax)

Project No.: Project Desc.: Page No. Calculated By: Checked By:

Route 24 \& Columbia Turnpike

ALTERNATIVE 4

BEAM GUIDE RAIL	LF	$3,100.00$	$\$$	35
$9 " \times 16 "$ CONCRETE VERTICAL CURB	LF	$10,440.00$	$\$$	25
CANTILEVER SIGN STRUCTURE	UNIT	1.00	$\$$	90,000

TOPSOIL AND SEEDING (MAIN LINE)	MILE	0.80	\$	112,815	\$	90,252
PLANTING (MAINLINE)	MILE	0.80	\$	64,500	\$	51,600
TOPSOIL, SEEDING, PLANTING (FINGER RAMP)	MILE	0.35	\$	12,500	\$	4,375
TOPSOIL, SEEDING, PLANTING (ACCESS ROAD)	FT	1,800.00	\$	8	\$	14,220

FIELD OFFICE	MILE	1.40	\$	44,260	\$	61,964
MATERIALS FIELD LABORATORY	MILE	1.40	\$	28,970	\$	40,558
EROSION CONTROL DURING CONSTRUCTION	MILE	1.40	\$	64,375	\$	90,125

PROJECT SUBTOTAL= \$ 6,116,159

LIGHTING, TRAFFIC STRIPES, SIGNS AND DELINEATORS	LS	3\% OF PROJ. SUBTOTAL	\$	183,485
MAINTANANCE OF TRAFFIC	LS	3\% OF PROJ. SUBTOTAL	\$	183,485
TRAINING	LS	1\% OF PROJ. SUBTOTAL	\$	61,162
MOBILIZATION	LS	9\% OF PROJ. SUBTOTAL	\$	550,454
PROGRESS SCHEDULE	LS		\$	6,000
CLEARING SITE	LS		\$	45,000
CONSTRUCTION LAYOUT	LS		\$	42,000
PROJECT TOTAL=			\$	7,187,744
CONTINGENCIES \& ESCALATION (YEAR 2021, 1.1)		CONSTR. ESTIMATE FOR CD=	\$	7,906,519
CONSTRUCTION ENGINEERING AMOUNT (16.2\% OF CONSTRUCTION COST)= \$				1,280,856
CONTING. FOR CONSTR. CHANGE ORDER ($\$ 25,000+4 \%$ OVER \$ 500 K)		CHANGE ORDER CONTING.=	\$	321,261

UTILITIES RELOCATIONS BY COMPANIES/OWNERS (2\% OF CC)				\$

UTILITY RELOCATION COST FOR CD ESTIMATE \$ 158,130

SUMMARY

	CONSTRUCTION ESTIMATE FOR CD	$\$$	$\mathbf{7 , 9 0 6 , 5 1 9}$
	DESIGN ENGINEERING	$\$$	$\mathbf{9 4 8 , 7 8 2}$
	CONSTRUCTION ENGINEERING (CE)	$\$$	$\mathbf{1 , 2 8 0 , 8 5 6}$
CONTINGENCIES	$\$$	$\mathbf{3 2 1 , 2 6 1}$	
UTILITIES:RELOCATIONS BY COMPANIES	$\$$	$\mathbf{1 5 8 , 1 3 0}$	

Alternative 4:

This alternative involves a new "half-interchange" on the Route 24 east of the Columbia Turnpike interchange, with on and off ramps to the EB roadway to Campus Drive. Campus Drive intersects Park Avenue (CR 623) at a point roughly $3 / 4$ mile south of Columbia Turnpike.

Advantages:

- Provides an alternative for the traffic exiting Route 24 EB destined for Park Avenue SB which may reduce the weaving conflict on Columbia Turnpike.
- Reduces congestion at the Columbia Turnpike and Park Avenue intersection.

Disadvantages:

- Creates a new weaving movement on Route 24 EB between the existing and proposed ramps that will operate at LOS ' F '.
- Campus Drive serves as an access roadway for several large office building. Not only was a trail built for Office employees to use for exercise during the lunch period, but many people use the roadway itself to walk. The trail and any walking that happens on Campus drive will no longer be possible.
- ROW will be required for the new ramps and roundabout. The majority of the ROW is in wetlands therefore additional ROW will be required for mitigation or additional funds allocated to purchase wetlands from a mitigation bank.
- The new ramps and roundabout will increase the impervious surface above the threshold for Storm Water Management Rules and this alternative will impact the existing drainage basins. Additional ROW will be required for a new basin.
- The new development will be within in Flood Hazard Area/Airport Hazard Area.

Route 24 Interchange \& Columbia Turnpike

Smart Solutions Study

NJDOT - MORRIS COUNTY

Route 24 Interchange and Columbia Turnpike - Smart Solution Study

I. BACKGROUND:

The Value Engineering/Smart Solutions Unit was requested to investigate and recommend improvements for the area between the Route 24 EB ramp to Columbia Turnpike and the signalized intersection of Columbia Turnpike and Park Avenue in Morris and Hannover Townships, Morris County. Our goal was to develop some recommendations that would improve the traffic flow between the ramp and the intersection along with provide some improvement to the operation of the intersection that could be investigated further.

The Route 24 EB ramp merges with Columbia Turnpike approximately 650 feet east of the signalized intersection and there is a heavy movement from this ramp to the double leftturn lane at the intersection. In our previous review of this area, Columbia Turnpike was striped as two through lanes but it has since been restriped as a dedicated through lane and a left turn lane. This intersection is currently near capacity with several movements failing and over capacity during the AM peak hours.

The 2007 and 2027 traffic volumes used in our review came from the Florham Park 2027 Transportation Needs Assessment Study conducted by Greenman Pedersen, Inc. for the Borough of Florham Park in 2007. The distribution of the Route 24 ramp traffic at the intersection had to be estimated using information from the 2010 Traffic Impact Study for the General Development Plan for the Honeywell Site conducted by Langan Engineering. This study included a new bypass road that relocated the left turns from this Route 24 EB ramp to a new intersection on Park Avenue south of Columbia. Based upon our analysis it was estimated that approximately $3 / 4$ of the AM ramp volume and $1 / 2$ of the PM ramp volume is making a left at the intersection. Also, left turn volumes coming from this ramp accounted for $1 / 3$ and $1 / 4$ of the lefts being made at Park Avenue during the AM \& PM peak hours, respectively.

II. BRAINSTORMING IDEAS

Based upon our field trip to the location, along with our brainstorming efforts in the office and the recommendation from the Transportation Needs Study, we were able to come up with several solutions that would improve the weaving problem between the Route 24 ramp and Park Avenue. Unfortunately, most of these improvements would not solve the congestion problems at the intersection in the future. We have summarized our brainstorming ideas below.

1. Create a Signalized T-Intersection with the Route 24 EB ramp to Columbia Turnpike WB (Figure 1)

This concept would widen the ramp to accommodate two lanes at the new intersection and by installing the signal here; it would meter the WB traffic to the Park Avenue signal and eliminate the conflict created by the ramp traffic weaving over to make a left at the signal. Since this section of Columbia Turnpike is divided,
the proposed signal would only affect Columbia WB traffic and the EB traffic would continue to be free flow.

Advantages:

- Eliminates the weaving conflict between the ramp and Columbia Turnpike traffic.
- No Right-of-Way would be required.
- Allows for the storage length of the left turn lanes to be extended if necessary.

Disadvantages:

- Potentially could have the ramp traffic back up onto Route 24.
- Does not solve the congestion problem at the Columbia and Park intersection and there would still be approximately 2,000 vehicles turning left in the AM peak hour at Park Avenue in the future.

2. Create a new ramp from Route 24 EB to Park Avenue (Figure 2)

This concept would construct a new ramp from Route 24 EB to Park Avenue to allow vehicles destined to Park Avenue, a direct connection - eliminating the need to weave over two lanes to make a left from Columbia Turnpike.

Advantages:

- Eliminates the weaving conflict between the Route 24 ramp and Columbia Turnpike traffic.
- Provide some congestion relief at the intersection for a short period of time.

Disadvantages:

- Will require one property to be acquired along with some frontage from several other properties.
- Does not solve the congestion problem at the Columbia and Park intersection and there would still be approximately 1,400 vehicles turning left at Park Avenue in the future.
- Design waivers may be needed for a partial interchange and interchange spacing.
- Environmental issues.

3. Create an overpass over Columbia Turnpike for the Route 24 EB ramp and connecting to Park Avenue south of Columbia (Figure 3)

This concept would still allow traffic to exit onto Columbia Turnpike but it would create a direct connection to Park Avenue south of Columbia Turnpike.

Advantages:

- Eliminates the weaving conflict between the ramp and Columbia Turnpike traffic.

Disadvantages:

- Does not solve the congestion problem at the Columbia and Park intersection and there would still be approximately 1,400 vehicles turning left at Park Avenue in the future.
- Will require Right-of-Way for ramp extension.
- Will add another signal on Park Avenue approximately 600 feet south of the Columbia signal.
- Potential Wetlands (stream) impacts.

4. Create a two-lane modern roundabout at the intersection of Columbia Turnpike and Park Avenue (Figure 4)

This concept would eliminate the signal at this intersection and replace it with a 2lane modern roundabout to improve the operation of the intersection and remove the need for the ramp traffic to weave over to make the left.

Advantages;

- Minimum Right-of-Way would be required.
- Signal would be eliminated.
- Safer due to low angle, low speed crashes.
- Less conflicting moves.
- No maintenance required.

Disadvantages;

- Public acceptance
- Projected traffic volumes may exceed the capacity of the roundabout.

5. Create a triple left turn lane on Columbia Turnpike WB and separate the left turns originating from the ramp from Columbia Turnpike lefts (Figure 5)

This concept would split the Columbia Turnpike traffic into two separate lanes in advance of the merge from the Route 24 EB ramp; one for left turning moves only and one for thru and right turns prior to the Route 24 ramp. These lanes would be separated by an island and it would extend to the intersection (similar to Route 1 and Quakerbridge Road). The lane with the left turns would eventually widen to two
lanes. When the Route 24 ramp merged it would have its own lane and any lefts would only have to weave with the thru/right turning traffic on Columbia. At the intersection there would be a third left turn lane along with separate thru and right turn lanes.

Advantages:

- Additional capacity for left turn moves.
- Ramp traffic wishing to make a left at Park Avenue will only have to weave with the Columbia Turnpike thru and right turning traffic.

Disadvantages:

- This unorthodox configuration would have to be approved by Traffic Engineering.
- Will require Right-of-Way for widening.
- Unfamiliar traffic pattern for motorists.

6. Create an overpass for Park Avenue to go over Columbia Turnpike with a far side ramp from Columbia Turnpike WB to Park Avenue SB (Figure 6)

This concept would grade separate Park Avenue over Columbia Turnpike and a far side two-way connector road would be built from Columbia Turnpike to Park Avenue. The road from Columbia WB to Park SB would have to be a double lane, free flow ramp because of the approximate 2,000 vehicles that would have been making a left to Park Avenue SB. The connector road would address the left turns that would have been made from the remaining three legs and be signalized at both ends. There may be a potential weave problem along Columbia Turnpike between the Route 24 ramp and the new connector road. If this weave is a problem perhaps a new ramp from Route 24 EB to Park Avenue also be added.

Advantages:

- Eliminates the long-term congestion problem at the Columbia and Park intersection.
- Improves traffic flow in the area.

Disadvantages:

- Will require extensive Right-of-Way.
- May be cost prohibitive.
- Environmental issues.

7. Eliminate ramp from Rt. 24 EB to Columbia Turnpike WB and eliminate ramp from Columbia Turnpike EB to Rt. 24 EB and create new intersection on Columbia Turnpike (Figure 7)

This concept would eliminate ramp from Rt. 24 EB to Columbia Turnpike WB and ramp from Columbia Turnpike EB to Rt. 24 EB and create new intersection on Columbia Turnpike to accommodate the moves that were removed.

Advantages:

- Eliminate the weave on Columbia Turnpike.
- Increase the stacking distance.

Disadvantages:

- Will not accommodate the left turns from Columbia Turnpike to Park Avenue in 2027 built year.
- Additional traffic signal on Columbia Turnpike.

8. Create an SPUI (Single Point Urban Interchange) or Diverging Diamond Interchange at Park Avenue and Columbia Turnpike Intersection (Figure 8)

This concept would grade separate Park Avenue over Columbia Turnpike using Single Point Urban Interchange or Diverging Diamond Interchange.

Advantages:

- Eliminates the congestion problem at the Columbia and Park intersection.
- Improves traffic flow in the area.

Disadvantages:

- High Right-of-Way impacts.
- Will be expensive to construct.

9. Create a new Ramp/Overpass from Columbia WB to Park Avenue along with a new Ramp from Route 24EB to Park Avenue (Figure 9)

This concept is combination of two previous ideas (\#2 and \#3) with a slight modification that combines the lefts from Columbia Turnpike WB with the Columbia Turnpike WB traffic destined to Route 24 EB. The end result will address those extremely high lefts (1900 vehicles/hr in 2027) at Park Avenue. The ramp from Figure \#2 should take about $1 / 3$ of the lefts and the ramp from Columbia turnpike (overpass) will take the remaining $2 / 3$. The only issue is the proximity of 2 traffic signals which will have to be evaluated further.

Advantages;

- Eliminates the congestion problem at the Columbia and Park intersection.
- Improves traffic flow in the area.

Disadvantages;

- High Right-of-Way impacts.
- Will be expensive to construct.
- Additional traffic signal on Park Avenue.

10. Create a new Ramp from Route 24 EB Columbia WB to Park Avenue (Figure 10)

This concept will create a new ramp connecting directly to Park Avenue and remove this volume from the Columbia Turnpike \& Park Avenue intersection. This idea has an extremely high environmental impacts, so it would be an opportunity for partnering with Morris County. Morris County would be responsible for the location and the cost of this ramp including all DEP permits, and NJDOT would be responsible Rt. 24 widening. This concept would serve as cost sharing project, and let the local township to take some ownership of the traffic problems that were created from urban sprawling.

Advantages;

- Improves the congestion problem at the Columbia and Park intersection.
- Improves traffic flow in the area.
- Cost sharing opportunity
- Might provide acceptable LOS without structures

Disadvantages;

- Extremely high environmental impact.
- High Right-of-Way impacts.
- Additional traffic signal on Park Avenue.

III. Summary of Findings:

There were several ideas that would help improve the weaving problem between the Ramp 24 SB ramp and Park Avenue but they did not address the main issue which was the congestion and failing movements at the signalize intersection of Columbia Turnpike and Park Avenue. Given the anticipated growth this intersection will require significant improvements and any improvements made to relieve the Route 24 weave problem will be insignificant. In order to accommodate the 2027 traffic growth, grade separation option will be needed at this intersection, and possibly a combination with other ideas.

Furthermore, this intersection is located within the local municipality jurisdiction, and funding for this project should be the responsibility of the local township and the new/proposed development. This is a perfect example of urban sprawling, and NJDOT should not fund this type of projects. At the very least, cost sharing should be pursued further.

The Office of Value Engineering recommends that the problem statement should be submitted to the Department and go through the normal process.

IV. Action Taken:

A first meeting was held on April 11 ${ }^{\text {th }}$ with NJDOT Upper Management, and the directive was low cost, minimal ROW take option should be pursued. One low cost solution discussed was to combine idea \#1 and idea \#5 - hence, Alternative \#11A and \#11B emerged. The second meeting was held on May $2^{\text {nd }}$ to discuss these concepts.

a) Create a Double Left Turn Lanes on Columbia Turnpike WB with One Shared Left/Through Lane and One Through Lane and Signalize T-Intersection with the Route 24 EB ramp to Columbia Turnpike WB (Figure 11A)

This concept is a combination of idea \#1 (new two lane ramp with metering traffic signal on Columbia Turnpike WB) and idea \#5 (triple left turn lanes from Columbia Turnpike WB at the intersection). After further evaluation, a double left turn lanes and a shared left/through lane and another through lane and a right lane was evaluated. Also, there will be a 15 ' ROW take along Park Avenue to accommodate the additional left turn lane. The estimated construction cost for this concept is \$1.6 Million.

Advantages:

- Additional capacity for left turn moves on Columbia Turnpike to Park Ave.
- Eliminates the weaving conflict between the ramp and Columbia Turnpike traffic.
- Allows for the storage length of the left turn lanes to be extended if necessary.

Disadvantages:

- The shared left/through lane turned into a left turn lane only and reduced the capacity of the through move.
- Unfamiliar traffic pattern for motorists.
- Minor Right-of-Way would be required.

The traffic analysis indicate a double left and a shared through lane at Columbia Turnpike and Park Ave. triggers a split phase for Columbia (less green time, more
yellow and red). The resulting backups in the AM peak cut off the existing and proposed ramp system of Route 24 from entering Columbia Turnpike. Analysis also showed that 3 out of the 4 approaches are still failing (LOS F) in 2027. Hence, this concept was dismissed.

b) Create a Triple Left Turn Lanes on Columbia Turnpike WB with Two Through Lanes and Signalize T-Intersection with the Route 24 EB ramp to Columbia Turnpike WB (Figure 11B)

This concept is a variation of concept \#11A except that it has triple left turn lanes and two through lanes and a right lane on Columbia Turnpike. Therefore, in addition to the 15 ' ROW take along Park Avenue to accommodate the additional left turn lane, there will be 15 ' ROW take along Columbia Turnpike (MetLife frontage, and residential frontage past Park Avenue) to accommodate the additional through lane. The estimated construction cost for this concept is \$3.5 Million.

Advantages:

- One full additional left turn lane for left turn moves on Columbia Turnpike to Park Ave.
- Eliminates the weaving conflict between the ramp and Columbia Turnpike traffic.
- Allows for the storage length of the left turn lanes to be extended if necessary.

Disadvantages:

- Unfamiliar traffic pattern for motorists.
- High Right-of-Way would be required.

The traffic analysis the approach delay at Columbia Turnpike WB at Park Ave. is reduced significantly as compared to the existing condition and Concept \#11A in the year 2027 due to the additional left turn lane, but three out of the 4 approaches are still failing (LOS F). Since the cost is high and the benefit is low, this concept was dismissed.

Since both alternatives (11A and 11B) were dismissed, the office of Value Engineering and Traffic Engineering will further evaluate the following:

- Adaptive signal is recommended at Columbia Turnpike \& Park Avenue intersection with any concepts.
- Revisit brainstorming idea \#2 which is constructing a new ramp from Route 24 EB to Park Avenue to allow vehicles destined to Park Avenue, a direct connection eliminating the need to weave over two lanes to make a left from Columbia Turnpike. Hence, Alternatives \#12A and \#12B were emerged as a short term solution.
- Revisit brainstorming idea \#10 and further evaluated for long term solution.

A third meeting was held on May $22^{\text {nd }}$ with NJDOT Upper Management to discuss Alternatives \#12A \& \#12B, and Idea \#10.

c) Create a new ramp from Route 24 EB to Park Avenue with no widening in Park Avenue (Figure 12A)

This concept is a variation of brainstorming idea \#2 except that the exit ramp from Route 24 EB will be held close to Route 24 to minimize ROW impacts, and will have the stop control at the end of the ramp. The existing ramp from Route 24 EB to Columbia Turnpike EB will be removed since both exit ramps from Route 24 are too close, and would create confusion to motoring public. No construction estimate is available.

Advantages and disadvantages are described under the brainstorming idea \#2. The analysis showed that the Alternative 12A will operate safer, but will not alleviate the congestion.
d) Create a new ramp from Route 24 EB to Park Avenue with widening in Park Avenue (Figure 12B)

This concept is a variation of Alternative 12 A except that there will be 15 ' widening along Park Avenue from the end of the exit ramp, carrying it through Columbia turnpike for a three through lanes, then taper back to two lanes. No construction estimate is available, but it may cost upward of 5 Million.

Advantages and disadvantages are described under the brainstorming idea \#2. The analysis showed that the Alternative 12B will alleviate the congestion for the approximately first 5 years then it will deteriorate as the traffic volumes increases.

e) Create a new Ramp from Route 24 EB Columbia WB to Park Ave. (Figure 10)

Advantages and disadvantages are described under the brainstorming idea \#10. No construction estimate is available, but preliminary findings showed the following potential fatal flaws:
$>$ There are no place to construct the ramp to tie to Park Avenue since the vicinity area is fully developed. Also, there are numerous utility poles and wetland that would need to be addressed.
$>$ The new traffic signal at the terminus of the proposed ramp may not operate properly due to the proximity of the adjacent traffic signal.
$>$ There will be an incomplete interchange at this location, and FHWA will not participate.

The analysis showed that it will alleviate the congestion for the approximately first 5 years then it will deteriorate as the traffic volumes increases. The total overall delay at Columbia Turnpike and Park Avenue would be very similar to Alternative 12B.

Based on the results of these studies, the office of Value Engineering finds that the traffic congestion issue at Columbia Turnpike and Park Avenue is not due to the ramps off Route 24, but rather due to the local business development in the vicinity of Jets training facility off Park Avenue that drew high number of traffic to this location. The Department will analyze the cost benefit of these improvements, however, the analysis showed that any of these improvements will have a short term improvement that lasts approximately 5 years.

Next meeting is scheduled on $6 / 3 / 14$ at 9 AM

Figure \#1 - Create a Signalize T-Intersection with the Route 24 EB ramp to Columbia Turnpike WB

Figure 4 - Create a two-lane roundabout at the intersection of Columbia Turnpike and Park Avenue.

Figure 7 - Eliminate Ramp from Rt. 24 EB to Columbia Turnpike WB and Eliminate Ramp from Columbia Turnpike WB to Rt. 24 EB and create New Intersection on Columbia Turnpike

Figure 8 - Create an SPUI (Single Point Urban Interchange) or Diverging Diamond Interchange at Park Avenue and Columbia Turnpike Intersection

Figure 9 - Create an Overpass from Columbia Turnpike WB and Connecting to Park Avenue and Combined with Figure 2 which is Create a New Ramp from Route 24 EB to Park Ave.

Figure 10 - Create a new exit ramp from Route 24 EB and Connecting to Park Avenue

Figure 12B - New Ramp from Rt. 24 EB to Park Ave. (with Widening)

	No Build	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8	Alternative 9	Alternative 10	Alternative 11A	Alternative 11B	Alternative 12A	Alternative 12B
Description		Create a Signalize TIntersection with the Route 24 EB ramp to Columbia Turnpike WB	Create a new ramp from Route 24 EB to Park Avenue	Create an overpass over Columbia Turnpike for the Route 24 EB ramp and connecting to Park Avenue south of Columbia	Create a two lane modern roundabout at the intersection of Columbia Turnpike and Park Avenue	Create a triple left turn lane on Columbia Turnpike WB and separate the left turns originating from the ramp from Columbia Turnpike lefts	Create an overpass for Park Avenue to go over Columbia Turnpike with a far side ramp from Columbia Turnpike WB to Park Avenue SB	Eliminate ramp from Rt. 24 EB to Columbia Turnpike WB and eliminate ramp from Columbia Turnpike EB to Rt. 24 EB and create new intersection on Columbia turnpike	Create an SPUI (Single Point Urban Interchange) or Diverging Diamond Interchange at Park Avenue and Columbia Turnpike Intersection	Create a new Ramp/Overpass from Columbia WB to Park Avenue along with a new Ramp from Route 24 EB to Park Avenue	Create a new Ramp from Route 24 EB Columbia WB to Park Avenue	Create a Triple Left Turn Lanes on Columbia Turnpike WB with One Shared Leff/Through Lane and Signalize TIntersection with the Route 24 EB ramp to Columbia Turnpike WB	Create a Triple Exclusive Left Turn Lanes on Columbia Turnpike WB and Two Through Lanes and Signalize T-Intersection with the Route 24 EB ramp to Columbia Turnpike WB	New Ramp from Rt. 24 EB to Park Ave. (No Widening)	New Ramp from Rt. 24 EB to Park Ave. (With Widening)
Eliminate Weave on Columbia Turnpike	No	Yes	Yes	Yes	No	Yes									
Address 2007 Left Turns on Columbia Tpk WB at Park	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes						
Address 2027 Left Turns on Columbia Tpk WB at Park	No	No	No	No	No	No	Possible	No	Possible	No	No	No	No	No	No
Grade Separated (Bridge)	No	No	No	Yes	No	No	Yes	No	Yes	Yes	No	No	No	No	No
Utility Impacts	None	None	Medium	Medium	Minor	Low-Medium	High	Minor	Major	Major	High	Medium	High	Low	High
ROW Impacts	None	Minor	Medium - Requires acquistion of few residential homes	High	Minor	Minor	High	Minor	High	Very High	Very High	Medium	High	Low	High
Access Impacts	None	None	Minor	Minor	Medium	Minor	Medium-High	Minor	High	Medium-High	Medium-High	Medium	High	Low	High
Environmental Impacts	None	Minor	Medium	High	Minor	Low-Medium	High	Minor	High	Very High	Extremely High	Low	High	Medium	High
Construction Cost	None	\$	\$	\$ $\$$	\$	\$	\$\$\$	\$	\$ \$ \$ \$	\$\$\$	\$\$\$\$	$1.6 \mathrm{M} \pm$	$3.5 \mathrm{M} \pm$	$\sim 3 \mathrm{M}$?	$\sim 5 \mathrm{M}$?
Traffic Operations	None	No	Imrprove for 2007 Fail in 2027	Improve Moderately	Imrprove for 2007 Fail in 2027	Imrprove for 2007 Fail in 2027	Improve Moderately	No	Improve Moderately	$\begin{aligned} & \text { Imrprove for } 2007 \\ & \text { Fail in } 2027 \end{aligned}$	Imrprove for 2007 Fail in 2027				
Likehood of Acceptance	Not to Morris County	Fair - Just a bandaid fix	Fair	Not Likely	Not Likely; Public do not like roundabouts	Possible	Not Likely	Not Likely	Not Likely	Possible	Not Likely - Needs Partnering with Morris County	Possible	Possible	Possible	Possible
Likehood of Construction	Most Likely	Possible	Possible	Not likely	Not Likely	Possible	Not Likely	Not Likely	Not Likely	Possible	Not Likely - DEP	Possible	Possible	Possible	Possible
Value/\$	N/A	High	Medium	Low	High	High	Medium	Medium	Low	Low	Low	High	Medium	High	Medium

Kishor Shah

From:
Sent:
To:
Cc:
Subject:
Attachments:

Brian M. Stankus bstankus@ihengineers.com
Friday, October 21, 2016 2:07 PM
nlinnik@ihengineers.com
kshah@ihengineers.com
FW: Rt.24, EB Ramp to CR 510
CR 510 and Park Ave.pdf; CR 510 from Park Av to Rt 24.pdf

M aybe I never uploaded it to the server, but I really thought I had at least given you hard copies.
I am running out the door - maybe we can discuss details on M onday. Have a good weekend.
--B

From: Gary Patterson [mailto:gpatterson@ihengineers.com]
Sent: Thursday, May 19, 2016 11:00 AM
To: bstankus@ihengineers.com
Cc: jkorunow @ihengineers.com
Subject: FW: Rt.24, EB Ramp to CR 510
Brian,
FYI. We should probably ask him to copy you on all correspondence...

From: Shah, Dashrath [mailto:Dashrath.Shah@dot.nj.gov]
Sent: Thursday, May 19, 2016 9:32 AM
To: jkorunow@ihengineers.com; Gary Patterson
Cc: D'Arcy, Edward
Subject: FW: Rt.24, EB Ramp to CR 510
FYI
Dashrath Shah
Principal Engineer-Team D
Division of Project M anagement
NJDOT
(609)530-3713

From: LiSanti, Daniel
Sent: Thursday, May 19, 2016 8:43 AM
To: Shah, Dashrath
Cc: Azam, Sophia; Boucher, Amon
Subject: Rt.24, EB Ramp to CR 510
Hello Dashrath:
The Bureau of Transportation Data and Safety has received your Safety M anagement System Information request dated May 3, 2016. In response to your Safety M anagement System ranking request for Route 24, EB Ramp to CR 510, Hanover and M orris Townships, M orris County, we have determined the following:

- Route 24, MP 2.09, EB Ramp to CR 510 is within limits of Route 24, M P 0.2 to 2.20 , roadway segment which is ranked \#69 on our preliminary 2015 NJDOT Corridor Segment List (2011-2013 crash data). This list has not been approved to date but we expect final approval soon. We do not expect the ranking to change significantly. Upon final approval, we will provide you with the final ranking.

In response to your Safety M anagement System ranking request for CR 510 (Columbia Avenue), Park Avenue to Route 24, M P 14.23 to 14.60, and the signalized intersection of Columbia Avenue and Park Avenue, M P 14.23, Hanover and Morris Townships, Morris County, we are unable to provide a ranking. Our Safety Management System provides rankings for locations under the state's jurisdiction, this location, per SLD, appears to be under the jurisdiction of the county. The MPO's, in this case NJTPA, have list which include county and local roads. This location may be ranked on one of NJTPA's list. For your use, a crash check was performed for both Columbia Avenue, Park Avenue to Route 24, and at the signalized intersection of Columbia Avenue and Park Avenue for the years 2011-2013, see attached files.

If you have any questions or require additional information, please do not hesitate to contact us.
Thanks
Daniel LiSanti, PE
Project M anager
Transportation Data \& Safety
New Jersey Department of Transportation
P.O. Box 600

Trenton, NJ 08625-0600
Office Phone: (609) 530-4692
Daniel.LiSanti@dot.nj.gov

From: Azam, Sophia
Sent: Tuesday, May 03, 2016 10:40 AM
To: LiSanti, Daniel
Subject: FW: Rt.24, EB Ramp to CR 510
Please assign. Thanks
From: Shah, Dashrath
Sent: Tuesday, M ay 03, 2016 10:39 AM
To: Bertucci, Philip; Chan, Kiong; Levinton, Ira; Barretts, Chris; Lewis, Jim; Hawkinson, Bruce; Azam, Sophia; Longworth, John; Jamerson, John; Abraham, Antoun; Roessner, Chrissa; Appesh, Nart; M aniar, Nipa; Amin, Padmanabha; Dube, Richard; Pinto, Frank
Cc: D'Arcy, Edward
Subject: Rt.24, EB Ramp to CR 510
Hi everybody,
Find attached the shotgun memo for the above subject project.
Each unit is requested to provide the input/information relevant to this project.
Thanks

Dashrath Shah
Principal Engineer-Team D
Division of Project M anagement

NJDOT
(609)530-3713

Appendix " R "

Cost Estimates

103 College Road East, 1st Floor, Princeton, NJ 08540 (609) 734-8400, (609) 734-8405 (fax)

ALTERNATIVE 1

ITEM DESCRIPTION	Unit	Quantity	Unit Price	Amount
STRIPPING (4"-6" DEPTH)	ACRE	3.70	$\$$	4,050
ROADWAY EXC. UNCLASSIFIED	CY	$27,350.00$	$\$$	40

EARTHWORK TOTAL= \$ 1,108,985

2 INCH HMA SURFACE COURSE \& 8 INCH BASE COARSE	LF	$9,450.00$	$\$$	80	$\$$	756,000
2 INCH HMA SURFACE COURSE \& 2 INCH BASE COARSE	LF	$2,670.00$	$\$$	16	$\$$	42,720

PAVEMENT TOTAL= \$ 798,720

| BRIDGE STRUCTURE | SF | $8,250.00$ | $\$$ | 225 | $\$$ |
| :--- | :--- | :--- | :--- | :--- | :--- | STRUCTURE TOTAL= \$ 1,856,250

URBAN AREA	MILE	0.25	$\$ 544,280$	$\$$	136,070
RAMPS	LF	$7,200.00$	$\$$	55	$\$$

BEAM GUIDE RAIL	LF	975.00	$\$$	46	$\$$	44,850
$9 " X 16 "$ CONCRETE VERTICAL CURB	LF	$1,050.00$	$\$$	35	$\$$	36,750
RETAINING WALL	SF	$38,000.00$	$\$$	110	$\$$	$4,180,000$
BLOCK CURB	LF	350.00	$\$$	30	$\$$	10,500
TANGENT GUIDE RAIL TERMINAL	UNIT	2.00	$\$$	2,650	$\$$	5,300

INCIDENTAL ITEMS TOTAL= \$ 4,277,400

TOP SOIL AND SEEDING	MILE	1.30	$\$ 112,815$	$\$$	146,660
PLANTING	MILE	1.30	$\$ 64,500$	$\$$	83,850

FIELD OFFICE	MILE	1.30	$\$ 44,260$	$\$$	57,538
MATERIALS FIELD LABORATORY	MILE	1.30	$\$ 28,970$	$\$$	37,661
EROSION CONTROL DURING CONSTRUCTION	MILE	1.30	$\$ 64,375$	$\$$	83,688

GENERAL ITEMS TOTAL= \$ 178,887

TRAFFIC SIGNAL	LS	1.00	$\$ 200,000$	$\$$

PROJECT SUBTOTAL= $\$ \mathbf{9 , 1 8 2 , 8 2 1}$

LIGHTING, TRAFFIC STRIPES, SIGNS AND DELINEATORS	LS	3% OF PROJ. SUBTOTAL	$\$$	275,485
MAINTANANCE OF TRAFFIC	LS	1.5% OF PROJ. SUBTOTAL	$\$$	137,742
TRAINING	LS	1% OF PROJ. SUBTOTAL	$\$$	91,828
MOBILIZATION	LS	10% OF PROJ. SUBTOTAL	$\$$	918,282
PROGRESS SCHEDULE	LS	1.00		$\$$
CLEARING SITE	LS	1.00		$\$, 000$
CONSTRUCTION LAYOUT	LS	1.00		115,000

PROJECT TOTAL= \$ 10,816,158

CONTINGENCIES \& ESCALATION (YEAR 2021, 1.1)
CONSTR. ESTIMATE FOR CD= \$ 11,897,774

CONSTRUCTION ENGINEERING AMOUNT (9.5\% OF CONSTRUCTION COST)= \$ 1,130,289
CONTING. FOR CONSTR. CHANGE ORDER $(\$ 205,000+3 \%$ OVER $\$ 5 \mathrm{M}) \quad$ CHANGE ORDER CONTING. $=\mathbf{\$ 4 1 1 , 9 3 3}$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS (9\% OF CC)				$\$ 1,070,800$

SUMMARY

| CONSTRUCTION ESTIMATE FOR CD | $\mathbf{\$ 1 1 , 8 9 7 , 7 7 4}$ |
| ---: | :---: | ---: |
| CONSTRUCTION ENGINEERING (CE) | $\mathbf{1}, 130, \mathbf{2 8 9}$ |
| CONTINGENCIES | $\mathbf{\$ 1 1 , 9 3 3}$ |
| UTILITIES:RELOCATIONS BY COMPANIES | $\mathbf{4 1 1 , 0 7 0 , 8 0 0}$ |
| TOTAL ESTIMATE: | $\mathbf{\$ 1 4 , 5 1 0 , 7 9 6}$ |

103 College Road East, 1st Floor, Princeton, NJ 08540 (609) 734-8400, (609) 734-8405 (fax)

Project No.: Project Desc.: Page No. Calculated By: Checked By:

Route 24 \& Columbia Turnpike

ALTERNATIVE 4

BEAM GUIDE RAIL	LF	$3,100.00$	$\$$	35
$9 " \times 16 "$ CONCRETE VERTICAL CURB	LF	$10,440.00$	$\$$	25
CANTILEVER SIGN STRUCTURE	UNIT	1.00	$\$$	90,000

TOPSOIL AND SEEDING (MAIN LINE)	MILE	0.80	\$	112,815	\$	90,252
PLANTING (MAINLINE)	MILE	0.80	\$	64,500	\$	51,600
TOPSOIL, SEEDING, PLANTING (FINGER RAMP)	MILE	0.35	\$	12,500	\$	4,375
TOPSOIL, SEEDING, PLANTING (ACCESS ROAD)	FT	1,800.00	\$	8	\$	14,220

FIELD OFFICE	MILE	1.40	\$	44,260	\$	61,964
MATERIALS FIELD LABORATORY	MILE	1.40	\$	28,970	\$	40,558
EROSION CONTROL DURING CONSTRUCTION	MILE	1.40	\$	64,375	\$	90,125

PROJECT SUBTOTAL= \$ 6,116,159

LIGHTING, TRAFFIC STRIPES, SIGNS AND DELINEATORS	LS	3\% OF PROJ. SUBTOTAL	\$	183,485
MAINTANANCE OF TRAFFIC	LS	3\% OF PROJ. SUBTOTAL	\$	183,485
TRAINING	LS	1\% OF PROJ. SUBTOTAL	\$	61,162
MOBILIZATION	LS	9\% OF PROJ. SUBTOTAL	\$	550,454
PROGRESS SCHEDULE	LS		\$	6,000
CLEARING SITE	LS		\$	45,000
CONSTRUCTION LAYOUT	LS		\$	42,000
PROJECT TOTAL=			\$	7,187,744
CONTINGENCIES \& ESCALATION (YEAR 2021, 1.1)		CONSTR. ESTIMATE FOR CD=	\$	7,906,519
CONSTRUCTION ENGINEERING AMOUNT (16.2\% OF CONSTRUCTION COST)= \$				1,280,856
CONTING. FOR CONSTR. CHANGE ORDER ($\$ 25,000+4 \%$ OVER \$ 500 K)		CHANGE ORDER CONTING.=	\$	321,261

UTILITIES RELOCATIONS BY COMPANIES/OWNERS (2\% OF CC)		\$	158,130
	UTILITY RELOCATION COST FOR CD ESTIMATE	\$	158,130
	SUMMARY		
	CONSTRUCTION ESTIMATE FOR CD	\$	7,906,519
	DESIGN ENGINEERING	\$	948,782
	CONSTRUCTION ENGINEERING (CE)	\$	1,280,856
	CONTINGENCIES	\$	321,261
	UTILITIES:RELOCATIONS BY COMPANIES	\$	158,130
	TOTAL ESTIMATE:	\$	10,615,548

ROW COST						
Alternative 1						
	Block	Lot	Area	Land Value	Purchase	Cost
1	9101	4	16.800	\$8,421,000	0.321	\$160,901
2	9201	12	2.700	\$260,800	0.010	\$966
3	1201	1	16.722	\$2,172,200	Access	\$0
4	1201	1	16.722	\$2,172,200	0.093	\$12,081
5	1201	1	16.722	\$2,172,200	0.524	\$68,068
6	4802	1	8.490	\$4,970,000	2.273	\$1,330,602
7	4802	2	3.500	\$760,000	3.300	\$716,571
8	4902	1	8.690	\$2,247,500	1.311	\$339,065
9	4802	2	3.500	\$760,000	1.081	\$234,731
10	4903	1	0.451	\$146,600	0.451	\$146,600
					9.364	\$3,009,585
Alternative 2						
	Block	Lot	Area	Land Value	Purchase	Cost
1	9101	4	16.800	\$8,421,000	0.316	\$158,395
2	9201	12	2.700	\$260,800	0.012	\$1,159
3	1201	1	16.722	\$2,172,200	Access	\$0
4	1201	1	16.722	\$2,172,200	0.094	\$12,211
5	1201	1	16.722	\$2,172,200	0.295	\$38,321
6	4802	1	8.490	\$4,970,000	2.126	\$1,244,549
7	4802	2	3.500	\$1,240,300	3.500	\$1,240,300
8	4902	1	8.690	\$2,247,500	1.272	\$328,978
9	4902	2	1.080	\$377,600	1.080	\$377,600
10	4903	1	0.451	\$146,600	0.451	\$146,600
					9.146	\$3,548,113
Alternative 3						
	Block	Lot	Area	Land Value	Purchase	Cost
1	9101	4	16.800	\$8,421,000	0.321	\$160,901
2	9201	12	2.700	\$260,800	0.010	\$966
3	9502	1	0.662	\$219,200	0.100	\$33,112
4	9502	2	1.084	\$232,500	0.038	\$8,150
5	9502	3	1.757	\$244,200	0.036	\$5,004
6	1201	1	16.722	\$2,172,200	Access	\$0
7	1201	1	16.722	\$2,172,200	0.093	\$12,081
8	1201	1	16.722	\$2,172,200	0.456	\$59,235
9	4802	1	8.490	\$4,970,000	0.269	\$157,471
10	4802	1	8.490	\$4,970,000	1.882	\$1,101,713
11	4802	2	3.500	\$1,240,300	3.500	\$1,240,300
12	4902	1	8.690	\$2,247,500	0.391	\$101,125
					7.096	\$2,880,057

Alternative 3 (Revised)						
	Block	Lot	Area	Land Value	Purchase	Cost
1	9101	4	16.800	$\$ 8,421,000$	0.200	$\$ 100,150$
2	9201	12	2.700	$\$ 260,800$	0.028	$\$ 2,666$
3	9502	1	0.662	$\$ 219,200$	0.054	$\$ 17,947$
4	9502	2	1.084	$\$ 232,500$	0.049	$\$ 10,402$
5	9502	3	1.757	$\$ 244,200$	0.032	$\$ 4,420$
6	1201	1	16.722	$\$ 2,172,200$	3.870	$\$ 502,664$
7	4802	1	8.490	$\$ 4,970,000$	0.259	$\$ 151,734$
8	4802	1	8.490	$\$ 4,970,000$	1.882	$\$ 1,101,713$
9	4802	2	3.500	$\$ 1,240,300$	0.056	$\$ 19,845$
10	4902	1	8.690	$\$ 2,247,500$	0.435	$\$ 112,504$
						6.864
						$\$ 2,024,044$

Appendix " S "

Alternatives Matrix

CONCEPT DEVELOPMENT REPORT
Improvements at Route 24 and Columbia Turnpike Interchange
Morris Township and Hannover Township, Morris County, New Jersey

Alternatives Matrix

Alternatives	Description	$\begin{gathered} \text { Meets } \\ \text { Purpose and } \\ \text { Need } \\ \hline \end{gathered}$	Construction Cost *	ROW Acquisition Required	Benefits	Disadvantages
"No-Build"	No work will be completed to extend the useful life of the structure.	No	\$0.00	0		
Alternative 1	An overpass will be constructed over Columbia Turnpike diverting traffic from the Route 24 EB ramp to Columbia Turnpike WB to a new signalized intersection on Park Avenue approximately 600 ' south of the Columbia Turnpike intersection. The existing ramp from Route 24 EB to Columbia Turnpike WB will be closed. A new ramp connecting the new signalized intersection at Park Avenue NB to the Ramp leading to Route 24 EB will also be constructed.	No	\$14,510,796	$\begin{gathered} 10 \text { Parcels } \\ 9.565 \\ (\$ 3,009,585) \end{gathered}$	- Eliminates the weaving conflict between the Route 24 EB ramp (Exit 2A) and Columbia Turnpike WB traffic. - Reduces congestion at the Columbia Turnpike and Park Avenue intersection, including the WB Columbia Turnpike left turn onto Park Avenue SB.	- There will be three moves on Columbia Turnpike WB very close to each other namely the Exit to Route 24 EB, the Exit to Park Avenue via the flyover ramp and at the intersection of Park Avenue NB, which may create confusion to motorist. - Right-of-way will be required. - Environmental issues will be created. - Will be costly due to the new structure, land acquisition and environmental issues. - Will add another signal on Park Avenue approximately 600 feet south of the Columbia Turnpike signal. - Based on NJDEP Website, the widening on Park Avenue SB involves groundwater contamination, critical environmental and historic sites, and the highland planning area. All the constraints will need investigation, permits and necessary measures to satisfy the permit conditions which will increase time and cost. - At the intersection of Columbia Turnpike and Park Avenue, multiple movements will continue to operate at LOS ' F ' during both peak hours.
Alternative 2	A new two lane modern roundabout will be constructed to the south of Columbia Turnpike connecting Columbia Turnpike EB, Park Avenue and Route 24 EB. The ramp from Route 24 EB to Columbia WB will be removed and the ramp from Columbia Turnpike WB to Route 24 EB will be pushed further north to provide greater weave distance to the ramp from Route 24 EB to Columbia Turnpike EB. The existing ramps to and from Columbia Turnpike EB will be relocated to the proposed roundabout. Finally a new traffic signal will be provided at the new ramp intersection at Park Avenue.	No	\$13,888,330	$\begin{gathered} 10 \text { Parcels } \\ 9.146 \\ (\$ 3,548,113) \end{gathered}$	- Eliminates the weaving conflict between the Route 24 EB ramp (Exit 2A) and Columbia Turnpike WB traffic. - Reduces congestion at the Columbia Turnpike and Park Avenue intersection, including the WB Columbia Turnpike left turn onto Park Avenue SB. - Modern roundabouts typically will provide safe operation with low crash severity.	- Public acceptance. - During the morning peak hour, the WB roundabout approach will operate at LOS 'F'. Weaving movement on Route 24 EB between ramps will also operate at LOS ' F '. - Right-of-way will be required. - Environmental issues will be created. - Will be costly due to land acquisition and environmental issues. - Will add another signal on Park Avenue approximately 600 feet south of the Columbia signal. - Based on NJDEP Website, the widening on Park Avenue SB has groundwater contamination, critical environmental and historic sites, and the highland planning area. All the constraints will need investigation, permits and necessary measures to satisfy the permit conditions which will increase time and cost. - At the intersection of Columbia Turnpike and Park Avenue, multiple movements will continue to operate at LOS ' F ' during both peak hours.
Alternative 3	A barrier or island will be constructed on Columbia Turnpike WB to the east of the entering traffic from Route 24 EB Ramp to prevent these vehicles from weaving over to the left onto Park Avenue SB. The ramps to and from Columbia Turnpike EB and Route 24 EB will be modified to bring traffic to Park Avenue at a new signalized intersection. The modifications will accommodate the vehicles that can no longer turn left at Park Avenue from Columbia Turnpike WB. The ramp from Columbia Turnpike EB to Route 24 EB will be closed and traffic diverted to the new ramp connection at Park Avenue.	No	\$6,298,404	$\begin{gathered} 12 \text { Parcels } \\ 7.096 \\ (\$ 2,880,057) \end{gathered}$	- Eliminates the weaving conflict between the Route 24 EB ramp (Exit 2A) and Columbia Turnpike WB traffic. - Reduces congestion at the Columbia Turnpike and Park Avenue intersection, including the WB Columbia Turnpike left turn onto Park Avenue SB	- Weaving movement on Route 24 EB between ramps will operate at LOS ' F ' during the morning peak hour. - Right-of-way will be required. - Environmental issues will be created. - Will be costly due to land acquisition and environmental issues. - Will add another signal on Park Avenue approximately 600 feet south of the Columbia signal. - Based on NJDEP Website, the widening on Park Avenue SB has groundwater contamination, critical environmental and historic sites, and the highland planning area. All the constraints will need investigation, permits and necessary measures to satisfy the permit conditions which will increase time and cost. - At the intersection of Columbia Turnpike and Park Avenue, multiple movements will continue to operate at LOS ' F ' during both peak hours.

Alternative 3Rev (PPA)	This alternative was developed as the property which was to be purchased for alternative 3 is no longer available. The property owner was granted a permit to build the new hotel. A barrier or island will be constructed on Columbia Turnpike WB to the east of the entering traffic from Route 24 EB Ramp to prevent these vehicles from weaving over to the left onto Park Avenue SB. The ramps to and from Columbia Turnpike EB and Route 24 EB will be modified to bring traffic to Park Avenue at a new signalized intersection. The modifications will accommodate the vehicles that can no longer turn left at Park Avenue from Columbia Turnpike WB. The ramp from Columbia Turnpike EB to Route 24 EB will be closed and traffic diverted to the new ramp connection at Park Avenue.	No	\$5,735,581	$\begin{gathered} \text { 10Parcels } \\ 6.864 \\ (\$ 2,024,044) \end{gathered}$	- Eliminates the weaving conflict between the Route 24 EB ramp (Exit 2A) and Columbia Turnpike WB traffic. - Reduces congestion at the Columbia Turnpike and Park Avenue intersection, including the WB Columbia Turnpike left turn onto Park Avenue SB. - The new ramp will be constructed over an existing parking lot reducing the quantity of new impervious surface. - The new ramp will be an additional 350^{\prime} further south of the intersection with Columbia Turnpike than Alternative 3 providing less conflict with the two signalized intersections.	- Weaving movement on Route 24 EB between ramps will operate at LOS ' F ' during the morning peak hour. - Right-of-way will be required. - Will add another signal on Park Avenue approximately 950 ' south of the Columbia signal. - At the intersection of Columbia Turnpike and Park Avenue, multiple movements will continue to operate at LOS ' F ' during both peak hours.
Alternative 4	This alternative involves a new "halfinterchange" on the Route 24 east of the Columbia Turnpike interchange, with on and off ramps to the EB roadway to Campus Drive. Campus Drive intersects Park Avenue (CR 623) at a point roughly $3 / 4$ mile south of Columbia Turnpike	No	\$7,076,213	$\begin{gathered} 1 \text { Parcel } \\ 5.630 \\ (\$ 1,234,603) \end{gathered}$	- Provides an alternative for the traffic exiting Route 24 EB destined for Park Avenue SB which may reduce the weaving conflict on Columbia Turnpike. - Reduces congestion at the Columbia Turnpike and Park Avenue intersection.	- Creates a new weaving movement on Route 24 EB between the existing and proposed ramps that will operate at LOS ' F '. - Campus Drive serves as an access roadway for several large office buildings with multiple access driveways. Access is not allowed on ramps as per the Access Management Code. - Right-of-way will be required. If the driveways are revoked for the office buildings they will become land locked and therefore a problem for the Department. - Environmental issues will be created including impacting an existing drainage basins and wetland. - Will be costly due to land acquisition and environmental issues. - The new development will be within in Flood Hazard Area/Airport Hazard Area.

Construction cost includes design, utility relocation and construction. ROW and Access costs are not included in the Construction Cost.

Appendix "T"

Risk Register

Appendix "U"

Quantitative Risk Analysis Report
 (Not Applicable)

Appendix "V"

Utility Risk Assessment Plan
 (Not Applicable)

Appendix "W"

Complete Streets Checklist

NJDOT Complete Streets Checklist

Background

The New Jersey Department of Transportation's Complete Streets Policy promotes a "comprehensive, integrated, connected multi-modal network by providing connections to bicycling and walking trip generators such as employment, education, residential, recreational and public facilities, as well as retail and transit centers." The policy calls for the establishment of a checklist to address pedestrian, bicyclist and transit accommodations "with the presumption that they shall be included in each project unless supporting documentation against inclusion is provided and found to be justifiable."

Complete Streets Checklist

The following checklist is an accompaniment to NJDOT's Complete Streets Policy and has been developed to assist Project Managers and designers develop proposed alternatives in adherence to the policy. Being in compliance with the policy means that Project Managers and designers plan for, design, and construct all transportation projects to provide appropriate accommodation for bicyclists, pedestrians, and transit users on New Jersey's roadways, in addition to those provided for motorists. It includes people of all ages and abilities. The checklist applies to all NJDOT projects that undergo the Capital Project Delivery (CPD) Process and is intended for use on projects during the earliest stages of the Concept Development or Preliminary Engineering Phase so that any pedestrian or bicycle considerations are included in the project budget. The Project Manager is responsible for completing the checklist and must work with the Designer to ensure that the checklist has been completed prior to advancement of a project to Final Design.

Using the Complete Streets Checklist

The Complete Streets Checklist is a tool to be used by Project Managers and designers throughout Concept Development and Preliminary Engineering to ensure that all developed alternatives reflect compliance with the Policy. When completing the checklist, a brief description is required for each "Item to be Addressed" as a means to document that the item has been considered and can include supporting documentation.

NJDOT Complete Streets Checklist

CONCEPT DEVELOPMENT CHECKLIST

Instructions：

For each box checked，please provide a brief description for how the item is addressed，not addressed or not applicable and include documentation to support your answer．

Item to be Addressed	Checklist Consideration	YES	NO	N／A	Required Description
Existing Bicycle， Pedestrian and Transit Accommodations	Are there accommodations for bicyclists，pedestrians（including ADA compliance）and transit users included on or crossing the current facility？ Examples include（but are not limited to）： Sidewalks，public seating，bike racks，and transit shelters	\square	区	\square	Sidewalk exists on North－East corner of the intersection． There are no facilities like public seating， bike racks and transit shelters on Park Avenue and Columbia Turnpike．
Existing Bicycle and Pedestrian Operations	Has the existing bicycle and pedestrian suitability or level of service on the current transportation facility been identified？	\square	】	\square	There are limited to no shoulders and limited side walk along the project area．
	Have the bicycle and pedestrian conditions within the study area， including pedestrian and／or bicyclist treatments，volumes， important connections and lighting been identified？	\square	】	\square	There are no adequate existing facilities for bicycle and pedestrian
	Do bicyclists／pedestrians regularly use the transportation facility for commuting or recreation？	\square	】	\square	The limited bus service is to the office complexes．
	Are there physical or perceived impediments to bicyclist or pedestrian use of the transportation facility？	\square	区	\square	There are no physical or perceived impediments to cyclists or pedestrians．
	Is there a higher than normal incidence of bicyclist／pedestrian crashes within the study area？	\square	区	\square	There are no incidences of cyclist／pedestrian crashes recorded within the study area

NJDOT Complete Streets Checklist

Item to be Addressed	Checklist Consideration	YES	NO	N／A	Required Description
	Have the existing volumes of pedestrian and／or bicyclist crossing activity at intersections including midblock and nighttime crossing been collected／provided？	\square	区	\square	There are no existing cyclist／pedestrian volumes
Existing Transit Operations	Are there existing transit facilities within the study area，including bus and train stops／stations？	】	\square	\square	There are limited Bus services off Park Avenue，Bus stops at Park Place and Campus Drive．
	Is the transportation facility on a transit route？	\square	】	\square	This is a local service Morris－ Florham Park－ Madison．
	Is the transportation facility within two miles of＂park and ride＂or＂kiss and go＂lots？	\square	】	\square	There is a RR station（Convent Station on Morris and Essex Line）
	Are there existing or proposed bicycle racks，shelters，or parking available at these lots or transit stations？Are there bike racks on buses that travel along the facility？	区	\square	\square	There are existing bicycle racks at Madison Train Station
Existing Motor Vehicle Operations	Are there existing concerns within the study area，regarding motor vehicle safety，traffic volumes／congestion or access？	区	\square	\square	There are safety concerns with the weave from vehicles exiting 24 EB to Park Avenue SB and the volumes in the intersection during the peak periods．
Existing Truck／Freight Operations	Are there existing concerns within the study area，regarding truck／freight safety，volumes，or access？	\square	】	\square	No concerns with the truck traffic or volume．
Existing Access and Mobility	Are there any existing access or mobility considerations，including ADA compliance？	区	\square	\square	There are no pedestrian crossings or ADA compliant curb ramps within the intersection．There

NJDOT Complete Streets Checklist

NJDOT Complete Streets Checklist

Item to be Addressed	Checklist Consideration	YES	NO	N/A	Required Description
					compatible with pedestrians and cyclists
Major Sites	Have you identified the major sites, destinations, and trip generators within or proximate to the study area, including prominent landmarks, employment centers, recreation, commercial, cultural and civic institutions, and public spaces?	®	\square	\square	Jets Training Camp, Morristown Airport, Numerous office buildings and downtown Florham Park, Madison and Morristown.
Existing Streetscape	Are there existing street trees, planters, buffer strips, or other environmental enhancements such as drainage swales within the study area?	\boxtimes	\square	\square	There are street trees, planters, buffer strips or other environmental enhancement.
Existing Plans	Are there any comprehensive planning documents that address bicyclist, pedestrian or transit user conditions within or proximate to the study area? Examples include (but are not limited to): - SRTS Travel Plans - Municipal or County Master or Redevelopment Plan - Local, County and Statewide Bicycle and Pedestrian Plans - Sidewalk Inventories - MPO Transportation Plan - NJDOT Designated Transit Village	\boxtimes	\square	\square	The following study reports are available: 1. Florham Park Local Traffic Study - 2027 Transportation Needs Assessment Study. 2. Route 24 Interchange and Columbia Turnpike - smart Solution study. 3. Circulation Plan Element Township of Hanover Master Plan 4. Review of Existing \& Future Conditions to various Intersections due to the potential

NJDOT Complete Streets Checklist

Item to be Addressed	Checklist Consideration	YES	NO	N/A	Required Description
					Redevelopment of the Former Exxon Research facility.

PROJECT MANAGER SIGN-OFF

Statement of Compliance	YES	NO	If NO, Please Describe Why (refer to Exemptions Clause)
The Preliminary Preferred Alternative (PPA) accommodates bicyclists and pedestrians as set forth in the New Jersey Department of Transportation's Complete Streets Policy.	\square	\square	

Appendix " X "

Life Cycle Cost Analyses
 (Not Applicable)

Appendix " Y "

Systems Engineering Review Form
 (Not Applicable)

Appendix "Z"

Preliminary Engineering Public Involvement Action Plan

PUBLIC INVOLVEMENT ACTION PLAN (PIAP)

Improvements at Route 24 and Columbia Turnpike Interchange Morris Township, Borough of Florham and Hanover Township Morris County, New Jersey

PURPOSE:

The purpose of this project is to develop recommendations that would improve the traffic flow between the Route 24 EB Ramp 2A and the Columbia Turnpike intersection with Park Avenue along with providing improvements to the operation of the intersection that could be investigated further.

PROJECT HISTORY:

Operational Deficiency:
The Route 24 EB Ramp 2A merges with Columbia Turnpike approximately 650' east of the signalized intersection of Columbia Turnpike and Park Avenue. At this intersection there is a heavy AM left turn movement on the Columbia Turnpike WB approach that currently utilizes a double left turn lane.

Columbia Turnpike WB is impacted by the vehicles entering from Route 24 EB Ramp 2A weaving to the left turn lanes to Park Avenue SB. There is inadequate length for this movement to operate smoothly. This creates congestion that backs up onto the Route 24 mainline during the morning peak.

The intersection of Columbia Turnpike and Park Avenue operates at or close to capacity during both peak hours. During the morning peak hours, the WB left and SB through movements operate at unacceptable levels of service. During the evening peak hour, the NB approach operates at marginal levels of service.

DATA COLLECTION:

During this study the information was collected from NJDOT management system units especially from CMS, Value Engineering, ROW, Bureau of Landscape Architecture and Environmental Solutions, crash data, and as-built plans.

CRASH DATA:

Crash Data were obtained from NJDOT and county personals. As the project is not on NJDOT road, the crash analysis was not available. The following response from NJDOT Safety Management System:

Route 24, MP 2.09, EB Ramp to CR 510 is within limits of Route 24, MP 0.2 to 2.20, roadway segment which is ranked \#69 on our preliminary 2015 NJDOT Corridor Segment List (2011-2013 crash data). This list has not been approved to date but we expect final approval soon. We do not expect the ranking to change significantly. Upon final approval, we will provide you with the final ranking.

In response to your Safety Management System ranking request for CR 510 (Columbia Avenue), Park Avenue to Route 24, MP 14.23 to 14.60, and the signalized intersection of Columbia Avenue and Park Avenue, MP 14.23, Hanover and Morris Townships, Morris County, we are unable to provide a ranking. Our Safety Management System provides rankings for locations under the state's jurisdiction, this location, per SLD, appears to be under the jurisdiction of the county.

Project Location Map

PIAP GOALS:

Public participation is required to ensure that the community's issues and concerns are identified and addressed in the study outcome and consequently achieve community "ownership" of the proposed project. Public participation is a critical element in the successful implementation of the NJDOT Transportation Program. The PIAP goals are:

- Promote an on-going public partnership between the Department and the community where the project is located.
- Ensure early, frequent and continuous consultation with the public, notification of the affected parties, and provide opportunities for citizen in put in the identification of the solutions.
- Assist in building public support for, and agreement on the problem definition.
- Identify early in the process any potential "fatal flaws" that would prevent the advancement of the project or its ability to adequately address the identified problem(s) and the identification of potential impacts associated with each identified solutions.

The PIAP is intended to establish a public involvement process that is dynamic in nature so that it can evolve with the progress of the project, and serve as a framework for Public Involvement through the other phases of project development.

PIAP IMPLEMENTATION:

The Concept Development phase of the project development includes the collection, review and analysis of background data and existing physical features; the development of alternatives; and the selection the PPA.

The proposed public involvement process during the Preliminary Engineering Phase is outlined as follows:

Communication Methods

1. Develop and maintain a contact/mailing list of key project stakeholders, including, but not limited to, County and Township Officials, property owners, businesses, neighborhood associations, civic and cultural groups, environmental organizations, associations of low income, minority, elderly, and disabled constituents, etc. An initial stakeholders list can be found on page 6 (six) of this document. Stakeholders may be added throughout the project process as pertinent individuals/groups become evident.
2. Investigate the need for a Community Advisory Committee and/or a Business Advisory Committee to allow for efficient coordination between the community and its businesses with the NJDOT.
3. Develop visualization techniques, such as display boards, site photographs and traffic simulations prior to meetings to be utilized, where appropriate, to illustrate various concepts. Prepare handouts/fact sheets for distribution for each meeting summarizing the project status, various alternatives and eventually the PPA.
4. Identify and develop appropriate communication methods based on the results of the Environmental Justice Screening and input from OCR that may include, where appropriate, handouts/fact sheets in foreign languages, notices in foreign language newspapers, availability of interpreters, etc.

Meetings

1. If deemed necessary, hold smaller key stakeholder meetings with property owners, businesses, neighborhood associations, Parent Teacher Associations, civic and cultural groups, environmental organizations, associations of low income, minority, elderly, and disabled constituents, etc., who might be impacted by the project.
2. Hold a Local Officials Briefing - Governing Body to present the PPA to the Morris Township, Borough of Florham and Hanover Township for their acceptance and to request a Resolution of Support from each entity for the project. Minutes of the meeting will be prepared and distributed to the attendees for comment.
3. Hold Public Information Center (PIC) to solicit public comments on the project. Minutes of the meeting will be prepared and distributed for comment.

Evaluate the Public Involvement and make recommendations for the (Final Design Phase). This will ensure that the public involvement efforts remain seamless from one project development phase to another.

Preliminary Engineering Meeting Schedule:

Activity	Target Audience	Objective	Tentative
Local Officials Briefing - Governing Body	County and Municipal Officials	Present the project to officials for their acceptance; Request a Resolution of Support	TBD
Public Information Center (PIC)	General Public, impacted and interested parties, key stakeholders, etc.	Present project and solicit comments	TBD

PIAP DELIVERABLES:

Meeting Minutes:

Minutes will be prepared for all public involvement meetings. The minutes will be comprehensive and include an action item list. The minutes will be completed within five (5) business days of the meeting and distributed to all of the attendees.

Display Boards:

Display boards will be utilized to illustrate the proposed improvements to the local officials and the public. Project display boards may include project aerials and Preliminary Engineering Plans.

KEY PROJECTS STAKEHOLDERS

The following is a list of the key stakeholders identified to date for this project:

Morris County		
Christopher Vitz - Engineer	973-285-6758	cvitz@co.morris.nj.us
Danielle Ferland - Asst. Bridge Engineer	973-829-8622	dferland@co.morris.nj.us
Morris Township		
Peter Mancuso - Twp. Committee	973-704-1937	mancuso@att.net
Jim Slate	973-326-7443	jslate@morristwp.com
Lt. Ed Conrads - Morris Twp. PD	973-326-7454	econrads@mtpd1422.com
Mark Osterhoudt -Morris Twp. PD	973-326-7436	mosterhoudt@mtpd1422.com
Jesse Kaar - Morris Twp. FD	973-326-7462	jkaar@morristwp.com
Borough of Florham Park		
Mark Taylor - Mayor	973-410-5302	mtaylor@fpboro.net
Michael Sgaramella - Engineer	973-410-5473	msgaramella@fpboro.net
Chief Robert Treiber - Florham Park PD	973-377-2200	532@fppd.net
Joseph Orlando - Florham Park PD	973-410-5440	545@fppd.net
Hanover Township		
Dave Leo - Engineering	973-428-2489	dleo@hanovertownship.com
Bryan Pilipie - Hanover PD	973-428-2512	bpilipie@hanoverpolice.com
Borough of Chatham		
Steve Williams - Administrator	973-701-6807	swilliams@chathamborough.org
Borough of Madison		
Robert Vogel - Engineer	973-593-3060	vogelr@rosenet.org
Whippany Township		
Joe Cortright - Whippany FD	973-703-0285	jcortright@whippanyfire.com
Stakeholders may be added throughout the project as pertinent individuals/groups become evident.		
Concurrence by		
Office of Community and Constituent Relations		Date
Anthony Sytko 609-530-2110	Antho	@dot.nj.gov
Project Manager, Division of Project Management (DPM)		Date
Ed D'Arcy 609-530-3631	Edwar	@dot.nj.gov

Appendix "AA"

Preliminary Engineering Scope Statement

Preliminary Engineering

Concept Development Report Improvements at
 Route 24 and Columbia Turnpike Interchange Morris Township, Borough of Florham and Hannover Township Morris County, New Jersey

Abstract

Purpose: The Preliminary Engineering Scope Statement lists the proposed project's deliverables and the activities required to create those deliverables. The scope statement also provides a common understanding of the proposed project's scope to stakeholders, subject matter experts, and the designer and lists the proposed project's major objectives. It enables the Project Manager to perform more detailed planning, it helps guide the design team's work during execution, and provides the baseline for evaluating whether change requests or additional work are contained within or outside the proposed project's boundaries.

Notes: The intent of the Preliminary Engineering (PE) Scope Statement is to provide useful project information to designers who are interested in becoming the designer of record for PE and possibly Final Design and Construction for this project. In addition, it will be used to solicit a man-hour estimate and cost proposal. The PE Scope Statement identifies the key elements of PE that are necessary to advance the proposed project to the Final Design (FD) Phase.

The PE Scope Statement is developed by the Division of Project Management (DPM) Project Manager and the Concept Development (CD) Designer near the conclusion of CD, prior to requesting the services of a designer to perform PE. The Scope of Work section is approved by the appropriate Subject Matter Experts (SME).

Section 1 of the document focuses on Proposed Project Identification Information and CD data including the location and description. Section 2 of the document specifies the Scope of Work for PE.

PROPOSED PROJECT IDENTIFICATION INFORMATION

Proposed Project Specifics

Proposed Project Name	Limits
Concept Development Report Improvements at Route 24 and Columbia Turnpike Interchange, Morris Township, Borough of Florham and Hanover Township Morris County, New Jersey	CR 623 (Park Avenue) - MP 1.57 to MP 2.34 Route 510 (Columbia Turnpike) - MP 14.06 to MP 14.60
NJDOT Project Manager	NJDOT Executive Regional Manager
Edward D'Arcy	Atul Shah
Counties	Municipalities
Morris Select County 2 Select County 3	Morris Township Hannover Township Borough of Florham Park
UPC Number	154330
DB Number	15433
Legislative District(s)	$\underline{25} \underline{27}$
Congressional District (s)	$\underline{11}$
Route	Route 510, CR 623 and NJ Route 24
Start Milepost	[
End Milepost	-
Alternate Route	-

	-
	$\overline{-}$
	$\underline{\text { FY 2016-2017 Study and Development Program }}$
	$\overline{ }$
	$\underline{6-\text { Intersection Improvements }}$
	$\underline{\text { NJTPA }}$

Proposed Project Estimate

List the Proposed Project estimates for each category from Concept Development.

ROW	$\$$
Utility Relocation	$\$ \quad 452,421.00$
Construction	$\$ 5,026,895.00$
Construction Engineering	$\$ 813,281.00$
Contingencies	$\$ 205,807.00$
Total	$\$ 6,298,404.00$

CONCEPT DEVELOPMENT INFORMATION

| Date of Concept Development Report: | Date of Federal Approval of CD Report: |
| :--- | :--- | :--- | :--- |
| Date of CPC decision to advance project to PE: | |
| CD Designer: | \square In-House |
| PE to be Completed by (check one): | \square Consultant |
| Purpose and Need: The purpose of this project is to develop recommendations that would improve the traffic flow between the | |
| Route 24 EB Ramp 2A and the Columbia Turnpike intersection with Park Avenue along with providing improvements to the | |
| operation of the intersection that could be investigated further. | |
| The Route 24 EB Ramp 2A merges with Columbia Turnpike approximately 650 feet east of the signalized intersection of | |
| Columbia Turnpike and Park Avenue. At this intersection there is a heavy AM left turn movement on the Columbia Turnpike WB | |
| approach that currently utilizes a double left turn lane. | |
| Columbia Turnpike WB is impacted by the vehicles entering from Route 24 EB Ramp 2A weaving to the left turn lanes to Park | |
| Avenue SB. There is inadequate length for this movement to operate smoothly. This creates congestion that backs up onto the | |
| Route 24 mainline during the morning peak. | |
| The intersection of Columbia Turnpike and Park Avenue operates at or close to capacity during both peak hours. During the | |
| morning peak hours, the WB left and SB through movements operate at unacceptable levels of service. During the evening peak | |
| hour, the NB approach operates at marginal levels of service. | |
| Description of Preliminary Preferred Alternative: A barrier or island will be constructed on Columbia Turnpike WB to the east | |

Morris County, New Jersey

Preliminary Engineering

of the entering traffic from Route 24 EB Ramp to prevent these vehicles from weaving over to the left onto Park Avenue SB. The ramps to and from Columbia Turnpike EB and Route 24 EB will be modified to bring traffic to Park Avenue at a new signalized intersection. The modifications will accommodate the vehicles that can no longer turn left at Park Avenue from Columbia Turnpike WB. The ramp from Columbia Turnpike EB to Route 24 EB will be closed and traffic diverted to the new ramp connection at Park Avenue.

Project Goals and Objectives: It is the intent of this project to fulfill the purpose and address the needs while minimizing impacts to the environment, quality of life, access, right of way and utilities. Any proposed improvements will consider improvements to circulation, as well as impacts to emergency services and road user costs.

PRELIMINARY ENGINDERING INFORMATION (to be filled in upon selection of a designer)

PE Designer:	-	
FMIS Contract ID Number (e.g., 89 00766):	-	Funding Source: \quad
Agreement Number (e.g., 2001PM03):	-	

Morris County, New Jersey

Morris County, New Jersey

Morris County，New Jersey

Preliminary Engineering Deliverables

3．1 Preliminary Engineering Initiation	\boxtimes Utility Agreement	3．9 Preliminary Engineering Report
\ Kickoff Meeting Minutes	\boxtimes Subsurface Utility Engineering Test Pit Report	\ Approved Project Plan
3．2 Roadway Engineering	凹 Updated Base Plans（With Identified Conflicts）	\ Construction Cost Estimate
\boxtimes Control Survey Report	\square Railroad Diagnostic Team Meeting Memo of Record	\boxtimes Design Exception Report
\ Topographic Survey	3．6 Quality Management	Q Final Design Scope Statement
\ Base Maps	\square PE Quality Management Certification	\square Project Management Plan（Major Projects
\ Preliminary Drainage Design Report	3．7 Communications	\boxtimes Alternatives Analysis Report
\square Traffic Engineering Facility Location	\boxtimes Design Communications Report	\boxtimes Core Group Meeting Minutes
Q Constructability and Maintenance Review Comments	3．8 Environmental Documents	\boxtimes Final Design Public Involvement Action Plan
\square Preliminary ITS Facility Design Plans	Technical Environmental Studies	Q Complete Streets Checklist
\square Updated Preliminary Detour and Construction Staging Plans	\square Air Study	3．10 Contracts
\ Preliminary Roadway Plans	\square Noise Study	Final Design Addendum
Q Pavement Design Data	\square Ecology Study	Q Final Design Designer Fee Proposal
Q Pavement Recommendation	\square Hazardous Waste Study	Q Final Invoice
Lighting Warrant Analysis Report	\square Socio－Economic Study	Final Design Independent Cost Estimate
I Initial Deforestation／Reforestation Plan	\square Cultural Resources Study	区 Summary Independent Cost Estimate Report
Preliminary Construction Schedule	Section 4（f）	V Final Design Schedule
3．3 Structural Engineering	\square Individual Section 4（f）Evaluation	\triangle Final Design Budget
\square Structural Design Recommendation	\square Programmatic Section 4（f）	\ Notice of Authorization
Q Preliminary Geotechnical Engineering Report	\square De Minimis Section 4（f）Evaluation	3．11 Preliminary Engineering Approvals
3．4 Right of Way and Access	\square Net Benefit Section 4（f）Evaluation	【 Capital Program Screening Committee Recommendation
Project Access Plan	\square Executive Order 215 （E．O．215）	\boxtimes Capital Program Committee Approval
Q Access Impact Summary	\square Environmental Impact Statement	® FHWA Approval
Q Right of Way Report	\square Record of Decision（ROD）	
Q Right of Way Impact Plan	\square Categorical Exclusion Document	
\ Initial Right of Way Estimate	\square Certified Categorical Exclusion	
3．5 Utility Engineering	Q Environmental Assessment	
\triangle Utility Base Plans	\square Finding of No Significant Impact （FONSI）	
U Utility Letter No． 2	\boxtimes Environmental Commitments／Plan Sheets	
《 Utility Engineering Funding Authorization	\square Historic Sites Council Concurrence	

Morris County, New Jersey

Preliminary Engineering

SUMIMARY OF COMMITMIENTS
List any commitments made to the public, local officials or other government agencies:

Project Commitment	Unit Requesting the Commitment	Unit Fulfilling Commitment	Special Needs

List any anticipated commitments that may be made:

Preliminary Engineering

APPROVAL	Name	Title
Date Approved		
	Manager Bureau of Landscape Architecture and Environmental Solutions	
Edward D'Arcy	Project Manager Division of Project Management	
Atul Shah	Executive Regional Manager Division of Project Management	
	Director Division of Project Management	

Morris County, New Jersey

Preliminary Engineering

PRELIMINARY ENGINEERING SCOPE OF WORK

Table of Contents Page
Right of Way 10
Access 12
Drainage Management 13
Regional Maintenance 13
Hydrology and Hydraulics 13
Landscape 14
Environmental 16
Risk \& Value Engineering 24
Utilities. 25
Jurisdiction 27
Geometrics \& Roadway 28
Design Exceptions 31
Pavement. 32
Structures 33
Geotechnical 36
Survey 37
Railroads 39
Construction 40
Traffic Engineering 41
Electrical Maintenance 42
Traffic Operations and Intelligent Transportation System (ITS) Engineering 43
Commuter Mobility 44
Technical and Administrative Activities 45
Summary of Approvals 48

NOTE: The PE Designer will perform the tasks associated with PE as so marked, in preparation for Final Design. The Project Manager will review and negotiate the proposal, execute the Agreement and instruct the designer to begin work. The Project Manager will direct the proposed project through PE.

Right of Way

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3110	Prepare ROW Report	\boxtimes Yes \square No	\boxtimes Designer	
3115	Initiate ROW Impact Plan	\boxtimes Yes \square No	\boxtimes Designer	
3120	Hold ROW Kickoff Meeting	\boxtimes Yes \square No	\boxtimes ROW \boxtimes DPM	
3125	Prepare Initial ROW Estimate	\boxtimes Yes \square No	\boxtimes ROW \boxtimes DPM	

Total Number of Parcels: 11

1. Fee Parcel/Easements

Number of fee parcels (partial):	10	Number of fee parcels (entire):	1	Number of residential relocations:	
Number of permanent easements (E parcels):		Number of temporary easements:		Number of commercial relocations:	

2. List any known or potential environmental problems or issues that may impact Right of Way processes or decisions (cross reference with the
Environmental section of the Scope Statement document:
\qquad
3. List any environmentally sensitive parcels (ESPs), underground storage tanks, freshwater wetlands: wetlands
4. Identify Riparian Parcels (currently flowed), Easements and/or Green Acres Diversions by contacting NJDEP for any Right of Way to be acquired:
5. Identify parcels that can be eliminated by design change modifications and attempts to mitigate damages suffered by the remaining properties. \qquad
6. Decision to expand parcel for further use or contingency. \qquad .
\qquad
. List the number of Non Real Estate Engineering (NRE) parcels.
7. List any commitments and conditions made to the public or to private property owners that may impact Right of Way processes or decisions: \qquad
8. Green Acres mitigation method: \squareDollar ReimbursementProperty Replacement

Preliminary Engineering

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include number and type of parcels, known environmental problems, riparian parcels, public commitments, etc.

Access

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3105	Prepare Project Access Plan and Access Impact Summary	Yes $\quad \square$ No	\boxtimes DPM \boxtimes Designer \boxtimes OAD	

Number of Adjustments:	1	Number of Modifications:	1	Number of Revocations:	1

1. Note any pending agreements or access applications within the proposed project limits: \qquad
2. Are proposed left turn lanes in compliance with the Access Level?Yes
3. Is the proposed Typical Section of the roadway in compliance with the Highway Access Code?YesNo
4. Total No. of Driveways impacted: $\underline{3}$
5. Any commercial properties with access modifications and/or Revocations that have potential impacts to site parking slots, circulations and operation of business? \qquad Yes \boxtimes No If yes, provide details of impact with Block and Lot Nos. \qquad
6. Any commercial properties that will require necessary assistance in the establishment of the alternative access (as per NJAC 16:47-4.33)? \boxtimes YesNo If yes, provide details of assistance with Block and Lot Nos. Block 4802-Lot 1, Block 1201-Lot 1
7. Any commercial properties that will require the preparation of an Access Impact Assistance (AIA) report?YesNo If yes, provide Block and Lot Nos. \qquad -

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include number of driveways impacted, pending agreements or major access permit applications, driveway modifications causing circulation issues, alternative access issues, Access Impact Assistance issues, etc.

Drainage Management

Regional Maintenance
Hydrology and Hydraulics

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3085	Prepare Preliminary Drainage Design	\boxtimes Yes \square No	\boxtimes DPM \boxtimes Designer	

Drainage Management

1. Identify all existing drainage deficiencies as per the Drainage Management System: None

Regional Maintenance

2. Identify all existing drainage deficiencies (undersized system, excessive spread into travel lanes, insufficient inlets, flooding at low points, etc.): None Hydrology and Hydraulics
3. List proposed improvements including outfalls (especially tidal): \qquad
4. Is compliance with Stormwater Management rules triggered (> $>1 / 4$ acre new impervious surface, or 1 acre disturbance)? \boxtimes YesNo
5. Identify all NJDEP permits required: Freshwater Watlands, Stormwater Management, Highland Rules/Prevention Area, Morris County Soil Conservation District Certification
6. List proposed structural Best Management Practices (BMP) (e.g., Bioretention System, Constructed Wetlands, extended detention basins, infiltration system, wet ponds, porous pavement): Infiltration Basin
7. List proposed nonstructural BMP (e.g., Vegetation and Landscaping, Minimize Site Disturbance, Impervious Area Management, and Time of Concentration Modifications): \qquad
\qquad Will property rights need to be acquired? \boxtimes YesNo
8. Identify drainage outflow owner:

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include drainage deficiencies, new/improved ouffalls, storm water management rules, permits, Best Management Practices (structural and non-structural), easements/right-of-way, etc.

Preliminary Engineering

Landscape

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3010	Determine and Calculate Deforested Areas	\boxtimes Yes \square No	BLAES \boxtimes Besigner	

1. List any landscape architecture related commitments such as:

a. Wetland or Riparian Mitigation Planting:	
b. Historic Site commitments	
c. Vegetative Screens or Buffers	
d. Noise Barrier Aesthetics:	
e. Architectural Treatments on Bridge Retaining Walls:	
f. Tree Removal Mitigation:	Extensive tree removal required for the proposed ramp. Mitigation will be required.
g. Urban Design Work (paving, streetscapes, etc.):	
h. Aesthetic plantings:	
i. Existing tree preservation and protection:	
j. Reforestation Application:	

2. Anticipated visualization work for in-house and public information meetings:

a. Rendered Plans:	
b. 2D computer generated before \& after photographs:	
c. 3D computer generated mode:	

Morris County, New Jersey

Preliminary Engineering

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include screens or buffers, aesthetic plantings, mitigation plantings, reforestation, etc.

Environmental

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3300	Initiate Cultural Resources (Section 106) Process	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \boxtimes \text { Designer } \end{aligned}$	
3305	Conduct CR Survey	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \boxtimes \text { Designer } \\ & \hline \end{aligned}$	
3310	Prepare CR Survey Report	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \end{aligned}$	
3315	Review CR Survey Report	\boxtimes Yes \square No	\square BLAES	
3320	Address Comments on CR Survey Report	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \boxtimes \text { Designer } \\ & \hline \end{aligned}$	
3325	Approve CR Survey Report	\boxtimes Yes \square No	\triangle blaEs	
3330	Obtain SHPO Concurrence (No Resources, No Effect, No Adverse Effect)	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \boxtimes \text { SHPO } \end{aligned}$	
3335	Prepare Draft MOA (Adverse Effect Only)	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \end{aligned}$	
3340	Obtain SHPO Concurrence (No Adverse Effect with Conditions or Adverse Effect)	\boxtimes Yes \square No	$\begin{aligned} & \square \text { BLAES } \\ & \boxtimes \text { SHPO } \end{aligned}$	
3345	Obtain FHWA Approval of CR Survey Report	\square Yes \square No	$\begin{aligned} & \bar{\boxtimes} \text { FHWA } \\ & \square \text { BLAES } \end{aligned}$	
3350	Prepare Adverse Effect Documentation \& Submit to FHWA (Adverse Effect Only)	\square Yes \boxtimes No	\square BLAES	
3355	FHWA Sends Adverse Effect Documentation to ACHP	\square Yes \boxtimes No	\square FHWA	
3360	ACHP Reviews and Accepts or Declines Participation	\square Yes \boxtimes No	$\square \mathrm{ACHP}$	
3365	Resolve Adverse Effects	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { FHWA } \\ & \hline \end{aligned}$	
3370	Circulate MOA for Comment	\square Yes \boxtimes No	\square BLAES	

Morris County, New Jersey

Preliminary Engineering

3375	Prepare Final MOA	\square Yes \boxtimes No	\square BLAES	
3380	Execute the MOA	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \square \text { DPM } \\ & \square \text { FHWA } \square \text { ACHP } \\ & \square \text { SHPO } \end{aligned}$	
3390	Submit Historic Sites Council Application	\square Yes \boxtimes No	\square BLAES \square Designer \square SHPO	
3395	Present to Historic Sites Council	\square Yes \boxtimes No	\square BLAES \square Historic Sites Council	
3400	Inform Jurisdictional Agency Regarding Programmatic Section 4(f) Impacts	\square Yes \boxtimes No	\square BLAES	
3405	Receive Concurrence Regarding Programmatic Section 4(f) Impacts	\square Yes \boxtimes No	\square Jurisdictional Agencies	
3410	Prepare Programmatic Section 4(f) Evaluation	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \\ & \hline \end{aligned}$	
3420	Prepare De Minimis Section 4(f) Evaluation	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \end{aligned}$	
3425	Prepare Programmatic Net Benefit Section 4(f) Evaluation	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \end{aligned}$	
3430	NJDOT Reviews Programmatic Section 4(f) Evaluation	\square Yes \boxtimes No	\square BLAES	
3435	Revise Programmatic Section 4(f) Evaluation (NJDOT Comments)	\square Yes \boxtimes No	\square BLAES \square Designer	
3440	FHWA Reviews Programmatic Section 4(f) Evaluation	\square Yes \boxtimes No	\square FHWA	
3445	Revise Programmatic Section 4(f) Evaluation (FHWA Comments)	\square Yes \boxtimes No	\square BLAES \square Designer \square FHWA	
3450	FHWA Approves Programmatic Section 4(f) Evaluation	\square Yes \boxtimes No	\square FHWA	
3460	Inform Jurisdictional Agency Regarding Draft Individual Section 4(f) Impacts	\square Yes \boxtimes No	\square BLAES	
3465	Receive Concurrence Regarding Draft Individual Section 4(f) Impacts	\square Yes \boxtimes No	\square Jurisdictional Agencies	

Preliminary Engineering

$\left.\begin{array}{|c|l|l|l|l|}\hline 3470 & \text { Prepare Draft Individual Section 4(f) Evaluation } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } \\ \square \text { Designer }\end{array}\right]$

Morris County, New Jersey

Preliminary Engineering

3555	Revise EA (NJDOT Comments)	\square Yes \triangle No	\square Designer	
3560	FHWA Reviews EA	\square Yes \boxtimes No	\square FHWA	
3565	Revise EA (FHWA Comments)	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \\ & \hline \end{aligned}$	
3570	FHWA Approves EA	\square Yes \boxtimes No	\square FHWA	
3575	Conduct Draft Individual Section 4(f) Legal Sufficiency Review (EA)	\square Yes \boxtimes No	\square BLAES \square Designer \square FHWA	
3580	Circulate EA	\square Yes \boxtimes No	\square BLAES	
3585	Hold EA Public Hearing and Comment Period	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { Designer } \square \mathrm{CCR} \end{aligned}$	
3590	Address EA Comments	\square Yes \boxtimes No	\square BLAES \square Designer \square FHWA	
3595	Submit FONSI Request Package	\square Yes \boxtimes No	\square BLAES	
3600	FHWA Approves Final Individual Section 4(f) (EA)	\square Yes \boxtimes No	\square FHWA	
3605	FHWA Reviews and Issues FONSI	\square Yes \boxtimes No	\square FHWA	
3610	Publish Notice of FONSI Availability	\square Yes \boxtimes No		
3620	Publish Notice of Intent in Federal Register (EIS Only)	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \\ & \square \text { FHWA } \end{aligned}$	
3625	Invite Cooperating Agencies (EIS Only)	\square Yes \boxtimes No	\square FHWA	
3630	Hold NEPA Scope Meeting (EIS Only)	\square Yes \boxtimes No	\square BLAES \square DPM \square Designer \square FHWA	
3635	Prepare Alternatives Analysis Report	\square Yes \boxtimes No	$\begin{aligned} & \square \text { BLAES } \square \text { DPM } \\ & \square \text { Designer } \end{aligned}$	
3640	Prepare DEIS or DEIS/4(f)	\square Yes \boxtimes No	\square Designer	

Preliminary Engineering

$\left.\begin{array}{|l|l|l|l|l|}\hline 3645 & \text { NJDOT Reviews DEIS } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } & \\ \hline 3650 & \text { Revise DEIS (NJDOT Comments) } & \square \text { Yes } \boxtimes \text { No } & \square \text { Designer } & \\ \hline 3655 & \text { FHWA Reviews DEIS } & \square \text { Yes } \boxtimes \text { No } & \square \text { FHWA } & \\ \hline 3660 & \text { Revise DEIS (FHWA Comments) } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } \\ \square & \text { Designer }\end{array}\right]$

Preliminary Engineering

$\left.\begin{array}{|l|l|l|l|l|}\hline 3730 & \text { FHWA Publishes ROD in Federal Register } & \square \text { Yes } \boxtimes \text { No } & \square \text { FHWA } & \\ \hline 3735 & \text { Circulate FEIS } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } \\ \square & \text { Designer } & \\ \hline 3740 & \text { Conduct Air Quality Study } & \boxtimes \text { Yes } \square \text { No } & \begin{array}{l}\text { BLAES } \\ \text { Designer }\end{array} & \\ \hline 3745 & \text { Prepare Air Quality TES } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } \\ \square \text { Designer }\end{array}\right]$

Morris County, New Jersey

Preliminary Engineering

$\left.\begin{array}{|l|l|l|l|l|}\hline 3825 & \text { NJDOT Reviews Noise TES } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } & \\ \hline 3830 & \text { Address Noise TES Comments } & \square \text { Yes } \boxtimes \text { No } & \square \text { BLAES } \\ \square \text { Designer }\end{array}\right]$

Preliminary Engineering

3940	Address NJDEP Comments and Prepare Final EO 215 Document	\square Yes \square No	\square BLAES \square Designer	
3945	NJDEP Approves EO 215 Document	\square Yes \square No		
\square NJDEP				

Anticipated Environmental Document:CCED CEDEAEISEO 215

Total Number of Permits: 3

1. List any environmental impacts and/or issues: \qquad
2. List any environmental commitments (made in approved environmental documents, through Memoranda of Agreement with environmental agencies, other commitments made to the public, local officials or other government agencies such as 4f, Section 106 (historic architecture, archaeology), air, noise, hazardous waste and ecology: \qquad —
3. Check the environmental clearances or permits required on the project:

Federal

\square U.S. Coast Guard (Bridge)
\square USACOE Section 404 (Individual/Nationwide) discharge of fillUSACOE Section 10 (Navigable Waters) USACOE Section 9 (Dam or Dike)
National (or State) Wild \& Scenic RiversUSDOA Forms AS-1006Section 7 Endangered Species Consultation State
CAFRANJDEP Water Lowering NJDEP RiparianHazardous Waste Site Investigation (SI/RI) HazWaste Remedial Action Work plan NJDEP Sanitary Facilities

Other

Hackensack Meadowlands CommissionPinelands CommissionNJDEP Tidal Wetlands NJDEP Waterfront Development NJDEP Freshwater WetlandsNJDEP Pollutant Discharge NJDEP Flood Hazard Area NJDEP Water Quality Certificate ® NJDEP NJPDES Stormwater Construction GP (RFA)
ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include a list of the anticipated NEPA document, type of permits anticipated, anticipated environmental impacts and environmental commitments made in CD if any, etc.

It is anticipated that an EA or an EIS Document will be required.

Risk \& Value Engincering

Activity No. Activity Name Execute Responsible Unit Comments \square Yes \square No
Total Estimated Cost including Construction, ROW and Utilities:
Value Engineering Analysis Performed?
Risk Analysis to be Performed?

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include Value Engineering Analysis, Risk Analysis, and Cost information
An extensive Value Engineering Analysis was performed prior to Concept Development.
A Risk Register was prepared during Concept Development.

Morris County, New Jersey

Preliminary Engineering

Utilities

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3035	Prepare Utility Base Plans	\boxtimes Yes \square No	\triangle Designer	
3040	Establish Utility Engineering Funding	\boxtimes Yes \square No	\boxtimes DPM \boxtimes Designer \boxtimes Program Coord.	
3045	Send Letter No. 2 and Plans to Utility Company	\boxtimes Yes \square No	$\begin{aligned} & \square \text { DPM } \triangle \text { Designer } \\ & \square \text { Utility Co. } \end{aligned}$	
3050	Prepare Utility Agreement	\boxtimes Yes \square No	\boxtimes DPM \boxtimes Designer	
3055	Update Base Plans and Identify Conflicts	\boxtimes Yes \square No	$\begin{aligned} & \square \text { DPM } \boxtimes \text { Designer } \\ & \square \text { Utility Co. } \end{aligned}$	
3060	Execute Utility Agreement	\boxtimes Yes \square No	$\begin{aligned} & \boxtimes \text { DPM } \boxtimes \text { Utility Co. } \\ & \boxtimes \text { DAG } \end{aligned}$	
3080	Conduct Subsurface Utility Engineering (SUE)	\boxtimes Yes \square No	\square DPM \boxtimes Designer \boxtimes SUE Contractor \square Utility Co.	
3985	Update Utility Risk Assessment Plan	\boxtimes Yes \square No	\square DPM \boxtimes Designer	

Total Number of Utility Companies:

Utility Type	Utility Company	Size (Units of Measure)	Location (aeria//underground)
Gas	PSE\&G, NJ Natural Gas	Pipe	Underground
Electric	JCP\&L	Polts	Overhead
Cable	Cablevision	Pairs/ Strands	Overhead
Telephone	Verizon	Pipe	Overhead
Water	Southeast Morris County Municipal Utility Authority (SMCMUA)	Pipe	
Sewer	Morris Township Sewer		Underground
Fiber-Optic (non-Department)			
Other:	Algonquin Gas Transmission Line		Underground
Other:	Texas Eastern Gas Transmission Line		Underground
Other:			
Other:			

Morris County, New Jersey

Preliminary Engineering

1. Identify if the Utility Discover and Verification requires sub-surface utility exploration: no
2. Is a SUE (Subsurface Utility Engineering) Consultant required? \boxtimes Yes \square No
3. Identify Potential Conflicts: \qquad -
4. Identify Temporary Relocations that are needed during construction: \qquad
5. Number of poles? Approximately 25
6. Number of guy wires on existing poles? Approximately 8
7. Are there cell towers or substations? \qquad _
8. Can utility relocations be avoided or performed in advance of the project? Advance of the project
9. Can utility design/construction be performed by designer/contractor? \qquad -
10. Can ROW needed for utilities be identified? Yes

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include location of cell towers, location/presence of fiber optic lines, etc.

Preliminary Engineering

Jurisdiction

Activity No.	Activity Name	Execute	Responsible Unit	Comments
		\square Yes \square No		

Total Number of Maps: \qquad Total Number of Agreements: Are there streetscape or esthetic items intended for this project? \qquad YesNoYesNoNA

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include the anticipated number of maps and agreements, presence of streetscape or aesthetic treatments, local approval of such, etc.

Geometrics \& Roadway

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3030	Prepare Horizontal \& Vertical Geometry	\boxtimes Yes \square No	\square DPM \boxtimes Designer	
3070	Prepare Preliminary Roadway Plans	\boxtimes Yes \square No	\square DPM \boxtimes Designer	
3135	Prepare Construction Cost Estimate	\boxtimes Yes \square No	\square DPM \boxtimes Designer	
3165	Finalize Project Plan	\boxtimes Yes \square No	\boxtimes DPM \boxtimes Designer	

Construction Plans/Estimated Number of Sheets

Roadway and Bridges					
1	Key Map	30	Grades	$\underline{5}$	Method of Cross Sections
$\underline{2}$	Estimate-Distribution of Quantities	30	Traffic Control and Staging Plans	$\underline{60}$	Cross Sections
3	Typical Sections	30	Traffic Control Plans	10	Alternate Retaining Wall System
1	Plan Sheet Index		ITS Plans	$\underline{1}$	Estimate of Quantities - Bridge
30	Construction Plans	$\underline{5}$	Electrical Details	$\underline{1}$	Earthwork Summary
10	Environmental Plans	$\underline{6}$	Traffic Signal Plans	1	Earthwork Chart Sheet
$\underline{8}$	Profiles	30	Highway Lighting Plans	$\underline{5}$	Non-standard Roadway Construction Details
3	Ties	$\underline{5}$	Landscape Plans		Non-standard Bridge Construction Details
		30	Traffic Signing and Striping Plans	10	Drainage Plans
Right of Way Documents					
1	Entire Tract Map	1	Tabulation Sheets	11	Individual Property Maps (IPM)
30	General Property Parcel Maps	11	Parcel Descriptions	$\underline{3}$	Alignment Sheets
Other Documents					
	Jurisdictional Maps	30	Utility Agreements Plans		Railroad Crossing Element Plans
1	Project Specific Specifications				
Are there any additional documents? \square Yes \boxtimes No					

Preliminary Engineering

Please identify any additional documents: \qquad

1. Existing Roadway(s):

	Roadway No. 1	Roadway No. 2	Roadway No. 3	Roadway No. $\mathbf{4}$
Roadway Name:	Route 510 (Columbia Turnpike)	CR 623 (Park Avenue)		
Posted Speed(s):	40 MPH	35 MPH		
Highway Classification:	Urban Principal Arterial	Urban Principal Arterial		
Significance (local or regional):				
No. of Interchanges:	1	0		
Traffic Volumes:	$24,026(2011)$	$13,807(2014)$		
Design Speeds:	45 MPH	40 MPH		
Development Class:				
No. of Traffic Signals:	1	2		
No. of Intersections:	1	2		

2. Typical Section(s):

	Typical Section No. 1	Typical Section No. 2	Typical Section No. 3	Typical Section No. 4
Right of Way width:	66^{\prime} and varies at intersection	66^{\prime} and varies at intersection		
Number of Lanes:	$4-5$	4		
Lane width \& cross slope:	12^{\prime}, Cross Slope varies	12^{\prime}, Cross Slope varies		
Shoulder width \& cross slope:	0	$0^{\prime}-4 '$		
Median width:	$0^{\prime}-4{ }^{\prime}$			
Sidewalk/border width:				
Median description and the overall roadway width:	None - curbed	None - Curbed		

3. Intersection/Interchange (describe the existing intersection and/or interchanges including turning and auxiliary lanes.): \qquad

Morris County, New Jersey

Preliminary Engineering

4. Existing Deficiencies (provide an overview of the existing deficiencies. Geometric: Substandard horizontal and vertical sight distance, insufficient sight triangle, substandard vertical clearance, substandard or no shoulders, acceleration/deceleration lanes, etc. Safety Issues: check crash data for indicators of specific problems. Substandard/nonexistent guiderail, attenuators, pavement condition, skid resistance, median, etc. Note on substandard guiderail: the project limits should be extended to include upgrading any existing substandard guiderail run that extends beyond the proposed work limits as required by the Design Manual.): Non DOT Roads
5. Proposed Improvements (provide a brief narrative of the proposed improvements and how they address the identified deficiencies. Note changes to be made to profiles, alignment, guiderail, and typical section): \qquadNo

If no, please explain: No shoulders, sidewalk only on southeast corner, No shopping area only offices and bussiness complexes.
7. List any commitments made to the public, local officials or other government agencies: \qquad

ADDITIONAL INPUT
This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include a discussion of substandard design elements, design exceptions, and perhaps a quick description of the proposed geometry if it is unusual, commitments made to the community, etc.

The Project Location is not on NJDOT Road

Preliminary Engineering

Design Exceptions

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3150	Prepare Design Exception Report	\square Yes \boxtimes No	\square DPM \square Designer \square QMS \square State Trans. Engr. \square FHWA	

1. Design Exception(s):

a. Is a Design Exception required?Yes $\boxtimes \mathrm{N}$
b. List substandard features that are to remain and require Design Exception: County Roadway
c. Has the Design Exception Crash Analysis been received from the Bureau of Safety Programs?YesNo
d. Has the Design Exception Crash Data for each controlling substandard design element been requested from the Bureau of SafetyYesNo Programs?
e. Has FHWA provided preliminary concurrence on the Design Exceptions decisions (a) and (b) above?Yes $\boxtimes \mathrm{N}$
f. Has Value Solutions provided Reasonable Assurance on the Design Exceptions decisions (a) and (b) aboveYes \checkmark No

[^8]
Preliminary Engineering

Pavement

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3960	Obtain Pavement Design Data	\boxtimes Yes \square No	\boxtimes DPM \boxtimes Designer	
3970	Collect Existing Pavement and Subgrade Soil Information	\boxtimes Yes \square No	\square Pvmt. Design Unit Q Designer	
3975	Conduct Pavement Testing Program	\boxtimes Yes \square No	$\begin{aligned} & \square \text { Pvmt. Design Unit } \\ & \boxtimes \text { Designer } \end{aligned}$	
3995	Preform Pavement Lifecycle Cost Analysis	\boxtimes Yes \square No	$\begin{aligned} & \square \text { Pvmt. Design Unit } \\ & \boxtimes \text { Designer } \end{aligned}$	
3980	Prepare Pavement Recommendation	\triangle Yes \square No	$\begin{aligned} & \text { Pvmt. Design Unit } \\ & \boxtimes \text { Designer } \end{aligned}$	

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include evidence of subsurface drainage issues, settlement problems, stability problems, etc.

The Project Location is not on NJDOT Road

Structures

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3100	Prepare Structural Design Recommendation Summary	\square Yes \boxtimes No	\square Designer \square SME's	

Total Number of New Bridges:		Total Number of New Spans:	
Total Number of Rehab Bridges:	Total Number of Rehab Spans:		
Total Number of Replacement Bridges:		Total Number of Replacement Spans:	

1. Condition of existing bridge(s):

	Bridge No. 1	Bridge No. 2	Bridge No. 3	Bridge No. 4
a. NJDOT Structure Number:				
b. Year Built:				
c. Date/type of any major modifications:				
d. Type \& material of superstructure:				
e. Type and material of substructure:				
f. Feature that is spanned:				
g. Type of roadway it carries:				
h. Vertical Clearance of structure if it spans a roadway or railroad:				
i. Number of Spans:				
j. Length of Structure:				
k. Width of Structure:				
1. Horizontal Clearance of the pier/abutment with respect to the riding lane:				
m. Typical Section (number of lanes, width and cross slope and width of each sidewalk):				

Preliminary Engineering

	Bridge No. 1	Bridge No. 2	Bridge No. 3	Bridge No. 4
n. Parapet railing Type:				
o. Identify the structural deficiencies:				
p. Bridges over waterways scouring evaluation, bridge openifify capacity, and frequency of storm):				

2. Proposed Bridge(s)/Bridge Improvements:

	Bridge No. 1	Bridge No. 2	Bridge No. 3
a. Number of spans:			
b. Identify the type of maintenance of traffic that will be used (staging or detour):			
c. Identify the changes to the typical section of the existing structure:			
d. Vertical Clearance of structure if it spans a roadway or railroad:			
e. Length of Structure:			
f. Width of Structure:			
g. Horizontal Clearance of the pier/abutment with respect to the riding lane:			
h. Typical Section (number of lanes, width and cross slope and width of each sidewalk):			
i. Parapet railing Type:			
j. Identify the structural deficiencies:			
k. Coast Guard Permit Required:			

3. Are the minimum vertical clearance requirements over waterways, roadways, railroads met?Yes No
a. If no, please explain? \qquad
4. List other substandard features of proposed bridge:
5. Other Existing Structure(s):

Morris County, New Jersey

Preliminary Engineering

a. Identify existing minor structures (Noise barriers, Retaining Walls (cast in place or alternate system), Gabions, High Tower Lighting foundations, Pre-cast Culverts, Culvert extensions, Type and number of Overhead Sign Structures): $\underline{2 \text { retaining walls are required for the new }}$ ramp
b. Specify type and number of each substandard feature: \qquad
6. Proposed Other Structure(s):

	Structure No. 1	Structure No. 2	Structure No. 3	Structure No. 4
a. Identify changes in the existing minor structure that are being improved:				
b. List substandard features to be included in the design exception:				
c. Length:				
d. Width:				
e. Number of spans/units:				

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include scour, unusual existing or proposed structural elements, clearances, substandard elements, design exceptions, etc.

Geotechnical

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3095	Prepare Preliminary Geotechnical Engineering Report	\square Yes \boxtimes No	\square Geotechnical Engineering Unit \square DPM \square Designer	

1. Is there evidence of subsurface drainage problems? no
2. Is there evidence of settlement problems? no
3. Is there evidence of stability problems? no
4. Is there evidence of scour problems? NA
5. Are there existing soil-borings within the project limits? \qquad
6. Are there rock slopes/cuts located within the project limits? \qquad -
a. Are the rock cuts listed in the Rockfall Hazard Rating System? \qquad
b. Do catchment areas need to be cleaned or modified? \qquad
c. Are there apparent safety problems with protruding rock, sight lines, rock-fall and substandard existing mitigation measures? \qquad
7. Alternate site exploration (test pits)? \qquad

ADDITIONAL INPUT
This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include rock slope issues, soil borings, scour, unusual existing or proposed structural elements, clearances, etc.
Retaining Walls are required

Survey

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3015	Prepare Control Survey Report	\boxtimes Yes \square No	$\begin{aligned} & \square \text { DPM } \boxtimes \text { Designer } \\ & \square \text { Geodetic Survey } \end{aligned}$	
3020	Conduct Topographic Survey	\boxtimes Yes \square No	$\begin{aligned} & \boxtimes \text { Designer } \\ & \square \text { Geodetic Survey } \end{aligned}$	
3025	Prepare Base Maps	\boxtimes Yes \square No	\square DPM \boxtimes Designer \square Geodetic Survey \square CADD Support	

1. Identify available mapping information (aerial/conventional methods): aerial
2. How were the existing and proposed baselines established? NA
3. How were the existing and proposed ROW lines established? tax records
4. How was the horizontal and vertical control established; and which existing monumentation was used? NA
5. Is project in Tidal area?YesNo
If yes, then current mean high water elevation must be established in tidal water areas under Tidelands Bureau jurisdiction. \qquad
6. Has NJDOT Regional Survey office been contacted regarding existing Control, and as-built plans within the project? NA
7. Compliance with MAP filing law required? \boxtimes YesNo
8. Has NJDOT Geodetic Survey been contacted regarding existing control within the project?YesNo
9. Does Primary Control exist within the project limits or immediately adjacent to the project?Yes \boxtimes No If yes, what year was control established in? \qquad If no, will primary control be required? yes
10. Will plans be developed from aerial photogrammetry or as-built plans and conventional survey? Conventional Survey
11. Geodetic Survey Services will be provided by:In-HouseConsultant

Morris County, New Jersey

Preliminary Engineering

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include base mapping obtained in CD, tidal issues, compliance with MAP filing laws, geodetic control issues, etc.

Preliminary Engineering

Railroads

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3075	Hold Diagnostic Team Meeting	\square Yes \boxtimes No	 Safety Unit \square DPM $\quad \square$ Designer	

Railroads Affected	Select RR Line	Select RR Line 2	Select RR Line 3	\ldots

1. Grade Crossings Affected? \square Yes \square No
a. How many? \qquad
2. Is there sufficient overhead structure clearance?YesNo
3. Diagnostic Team Meeting Required:Yes No
4. Diagnostic Team Meeting Held: \qquad (DATE)
[^9]
Preliminary Engineering

Construction

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3130	Update Preliminary Detour and Construction Staging Plans	Yes $\quad \square$ No	\boxtimes Designer \square TSSE SME's	
3145	Conduct Constructability and Maintenance Review	\boxtimes Yes \square No	DPM \boxtimes Designer \square	

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include commitments made to local officials or other agencies, staging details, detour discussion, schedule constraints, utility conflicts, etc.

Traffic Engineering

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3090	Determine Traffic Engineering Facility Locations	\square Yes \boxtimes No	\square TSSE \square Designer	

Number of New Traffic Signals:	1	Number of Revised Traffic Signals:	1
New overhead signs and sign structures	\boxtimes Yes $\quad \square$ No	Revised overhead signs and sign structures	\boxtimes Yes \square No
New Guide Signs	\boxtimes Yes \square No	Revised Guide Signs	\boxtimes Yes \square No
Number of Roundabouts:	none	Emergency signal pre-emption	\square Yes \boxtimes No
Revised Highway Lighting	\boxtimes Yes \square No	Temporary Lighting 'for staging and diversion roadways"	\square Yes \quad No
Raised Pavement Markers	\boxtimes Yes \square No		

1. Maintenance of Traffic: (What type of maintenance of traffic will be used during construction, i.e. staging, detour, permanent lane closures, or diversion road): Lane Closer during night hours
2. Identify the number and location of temporary traffic signal(s) required during Staging or Detours: NA
3. Is there an adequate corner ROW cutout for signal equipment installation? \square Yes \quad No
4. Identify if a new or revised traffic signal agreement is required: yes - for the new Park Avenue ramp
5. Identify overhead utility conflicts for traffic signals to be identified and resolved: The roadway widening near intersection will need to relocate the poles.

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include discussion of need for temporary signals, right-of-way constraints (related to traffic signal equipment), utility conflicts, etc.

Electrical Maintenance

Activity No.	Activity Name	Execute	Responsible Unit	Comments
		\square Yes \boxtimes No		

1. Do any elements of this project scope require additional planned maintenance activities that would necessitate an increase in personnel or equipment resources? \qquad YesNo
If yes, provide details: \qquad
2. Do any elements of this project scope include new roadway/electrical appurtenances that would require specialized training, equipment or materials to properly maintain the item (e.g., Vortech drainage chamber, ornamental lighting, and brick pavers)?YesNo
If yes, provide details: \qquad
3. Does this project scope include or overlap sections of roadway that are simultaneously being planned or scheduled for Operations maintenance/construction activities?\square YesNo
If yes, provide details: \qquad
consideration be given to canceling or postponing the Operations activity?YesNo
If yes, provide details: \qquad

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include elements of the design that will necessitate an increase in maintenance personnel or equipment, conflicting or overlapping projects with Operations, etc.

Traffic Operations and Intelligent Transportation System (ITS) Engineering

Activity No.	Activity Name	Execute	Responsible Unit	Comments
3065	Prepare Preliminary ITS Facility Design	\square Yes \boxtimes No	Designer \square ITS \square Traffic Ops	

1. Project scope complies with the requirements of the latest ITS Investment Strategy and ITS Architecture? \square Yes \square No
2. Traffic Operations (North/ South) has been consulted for needs and impacts? \square Yes \square No Identify needs and impacts.
3. Transportation Data Development has been consulted for needs and impacts? \square Yes \square No Identify needs and impacts.
4. Project limits have been visually inspected for the existing ITS facilities?YesNo
5. Check if the project includes the construction or relocation of any of the following Intelligent Transportation System (ITS) facilities:Controlled Traffic Signal Systems (CTSS)
Weigh-in-Motion (WIM)Dynamic Message Signs (DMS) Roadway Weather Information Systems (RWIS) Highway Advisory Radio (HAR) In-Road SensorsTraffic Detection systems
Closed Circuit TV Cameras (CCTV)Fiber Optic Conduit and/or Cable Traffic Volume Stationsstems
Electrical or Communicatio
Other ITS Devices:
6. Check if real time work zone ITS Systems are to be deployed during construction:Queue Detection
Variable Speed Limit or AdvisoryDynamic Merge

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include compliance with latest ITS Investment Strategy and Architecture, consultation with Traffic Ops during CD, etc.

Morris County, New Jersey

Preliminary Engineering

Commuter Mobility

Activity No.	Activity Name	Execute	Responsible Unit	Comments
		\square Yes \boxtimes No		

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Examples of information for this section include bicycle and pedestrian compatibility, Complete Streets compliance, presence of bus stops, interruption of pedestrian accommodations during construction, ADA issues, etc.

Technical and Administrative Activities

$\begin{array}{c}\text { Activity } \\ \text { No. }\end{array}$	Activity Name	Execute	Responsible Unit	Comments
3005	Initiate Preliminary Engineering	\boxtimes Yes \square No	\square DPM \boxtimes Designer	
3160	Prepare Draft Preliminary Engineering Report	\boxtimes Yes \square No	\square DPM \boxtimes Designer	
3170	Prepare Final Design Scope Statement	\boxtimes Yes \square No	\square SME's \square DPM	
\boxtimes Designer				

3255	Develop FD Budget	\square Yes \boxtimes No	\square DPM \square OSBM	
3260	Finalize FD Budget	\square Yes \boxtimes No	\square DPM	
3265	Approve FD Budget	\square Yes \boxtimes No	\square DPM \square OSBM	
3270	Authorize Final Design	\square Yes \boxtimes No	\square DPM \square CIPD	
3275	Execute FD Addendum	\square Yes \boxtimes No	\square DPM \square Designer	
3285	Complete PE Closeout	\boxtimes Yes \square No	\boxtimes DPM	

1. Have the objectives of the Public Involvement Action Plan (PIAP) been satisfied? \square Yes \boxtimes No
2. Number of Local Workshop Meetings conducted in CD: none
3. Public Information Centers conducted in CD (number of meetings, location $\&$ dates): none
4. Number of Officials Briefings conducted in Concept Development: $\underline{1}$
5. List Issues, Commitments or Concerns: \qquad
6. Is the mailing list up to date?Yes
7. Are the Displays adequate to reuse in PE: \boxtimes YesNo
8. Resolution of Support Number: \qquad
Resolution of Support Date: \qquad

9. Other Coordination:

a. List additional organizations (Historic Society, Chamber of Commerce, Board of Education, Fire Company's etc.) or authorities (NJ Transit, NJ Turnpike, NJ Highway Authority, Port Authority, etc.) that have interest in the project: \qquad
b. Proposed Formal Public Involvement Program (estimate number of Official Briefings and Public Info Centers/Meetings/Hearings): \qquad
c. If additional displays are required, provide the specifics (number, scale, special graphics 3D, simulations, models, etc): \qquad
d. If a mailing list is required, provide the approximate number of property owners: \qquad
\qquad
\qquad Consultant?In-house DesignOther (Specify) \qquad
e. If handouts are required (provide the specifics, number, size, color or black and white, mapping, etc):
f. List special needs (i.e. Community Involvement Sub-Consultant, Facility Needs, Interpreter, Website, etc.): \qquad

Morris County, New Jersey

Preliminary Engineering

g. Traffic Staging: How many lanes of traffic need to be maintained? \qquad
What will be the available working hours? \qquad
Can the project duration be significantly reduced by reducing the number of stages? \qquad
Can detours be used? detours are lengthy
h. Schedule - Identify scheduling constraints (environmental, seasonal construction limitations, community). \qquad
What is the optimum period to start construction? \qquad -
i. Is the scope focused on replacement or rehabilitation of road/bridge? \qquad
Is condition likely to change/deteriorate between scoping and construction? no

ADDITIONAL INPUT

This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

Preliminary Engineering

Summary of Approvals

SME Unit	Manager	Approval	SME Involved	Remarks
Right of Way	John Miksits			
Access	Paul Ignari			
Drainage Management	Sue Gresavage			
Regional Maintenance	Nart Appesh			
Hydrology and Hydraulics	Joseph Sweger			
Landscape	Joseph Sweger			
Environmental	Joseph Sweger			
Risk \& Value Engineering	Robert Siley			
Utilities				
Jurisdiction				
Geometrics \& Roadway	Robert Abitz			
Pavement	Sue Gresavage			
Structures				
Geotechnical				
Survey				
Railroads				
Construction				

NJDOT Scope Statement

Preliminary Engineering

Traffic Engineering	Chris Barretts			
Electrical Maintenance				
Traffic Operations \& ITS				
Commuter Mobility	Eise Bremer-nei			

[^0]: Note:
 $* *$ These columns indicate the number of fatal crashes in each accident category. $\begin{array}{lr}\text { Length of Segment } \\ \text { Number of Years } & \square \\ \text { AADT } & \end{array}$ $\begin{array}{ll}\text { Length of Segment } & - \\ \text { Number of Years } & \\ \text { AADT } & \end{array}$

 Crash Rate/MVM
 2018 Statewide Crash Rate/MVM

[^1]: IWangan.comldatalTR\data91130032902\Office Data\Reports\Traffic\TIS revised Honeywell Redevelopment 05-2014.docx

[^2]: Alt 3B AM Peak - 2020 8:00 am 01/18/2017 2020 Alt 3B AM
 BMS-IH

[^3]: Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, Census 2000 Summary File 3

[^4]: Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race. N/A means not available
 Source: U.S. Census Bureau, American Community Survey (ACS) 2008-2012.

[^5]: This report shows environmental, demographic, and EJ indicator values. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

[^6]:

 before taking any action to address potential EJ concerns.

[^7]: NJDOT Project Manager / Date

[^8]: This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

 Examples of information for this section include evidence of subsurface drainage issues, settlement problems, stability problems, etc.
 The Project Location is not on NJDOT Road

[^9]: This section has been provided for the CD designer and the functional units to state any assumptions, to clarify and customize standard activities, and to add important information. Please be clear and concise. Provide your unit's contact person and number.

 Examples of information for this section include presence of at-grade crossings, overhead structure clearances, diagnostic team meetings, etc.

